Handbook of probability / Ionut Florescu, Ciprian Tudor.

By: Florescu, Ionuţ, 1973- [author.]
Contributor(s): Tudor, Ciprian, 1973- [author.]
Series: Wiley handbooks in applied statisticsPublisher: Hoboken, New Jersey : John Wiley & Sons, Inc., c2014Description: xx, 449 pages : illustrations ; 25 cmContent type: text Media type: unmediated Carrier type: volumeISBN: 9780470647271 (cloth)Subject(s): ProbabilitiesAdditional physical formats: Online version:: Handbook of probabilityDDC classification: 519.2 LOC classification: QA273 | .F65 2014
Contents:
Probability Space -- Probability Measure -- Random Variables : Generalities -- Random Variables : the Discrete Case -- Random Variables : the Continuous Case -- Generating Random Variables -- Random Vectors in Rn -- Characteristic Function -- Moment Generating Function -- Gaussian Random Vectors -- Convergence Types : A.S. Convergence, LP Convergence, Convergence in Probability -- Limit Theorems -- Appendix A: Integration Theory : General Expectations -- Appendix B: Inequalities Involving Random Variables and Their Expectations.
Tags from this library: No tags from this library for this title. Log in to add tags.
    Average rating: 0.0 (0 votes)
Item type Current location Home library Call number Status Date due Barcode Item holds
BOOK BOOK GRADUATE LIBRARY
GRADUATE LIBRARY
GENERAL REFERENCE
519.2 F663 2014 (Browse shelf) Available CITU-CL-45699
Total holds: 0

"Published simultaneously in Canada"--Title page verso.

Includes bibliographical references (pages 445-446) and index.

Probability Space -- Probability Measure -- Random Variables : Generalities -- Random Variables : the Discrete Case -- Random Variables : the Continuous Case -- Generating Random Variables -- Random Vectors in Rn -- Characteristic Function -- Moment Generating Function -- Gaussian Random Vectors -- Convergence Types : A.S. Convergence, LP Convergence, Convergence in Probability -- Limit Theorems -- Appendix A: Integration Theory : General Expectations -- Appendix B: Inequalities Involving Random Variables and Their Expectations.

There are no comments for this item.

to post a comment.