15 Introduction to Dynamic Mode Filtering and Prediction 571
15.1 Introduction 571
15.1.1 Prediction, Filtering, and Smoothing 574
15.2 Static Mode Filter 575
15.2.1 Real-time Moving Averages as Static Mode Filter 575
15.2.2 Sequential Least Adjustment as Static Mode Filter 577
15.3 Dynamic Mode Filter 578
15.3.1 Summary of Kalman Filtering Process 581
15.4 Kalman Filtering Examples 583
15.5 Kalman Filter and the Least Squares Method 607
15.5.1 Filtering and Sequential Least Squares Adjustment: Similarities and Differences 608
Problems 610
16 Introduction to Least Squares Collocation and the Kriging Methods 613
16.1 Introduction 613
16.2 Elements of Least Squares Collocation 616
16.3 Collocation Procedure 617
16.4 Covariance Function 618
16.5 Collocation and Classical Least Squares Adjustment 621
16.6 Elements of Kriging 624
16.7 Semivariogram Model and Modeling 624
16.8 Kriging Procedure 627
16.8.1 Simple Kriging 628
16.8.2 Ordinary Kriging 629
16.8.3 Universal Kriging 631
16.9 Comparing Least Squares Collocation and Kriging 632
Appendix A Extracts from Baarda’s Nomogram 635
Appendix B Standard Statistical Distribution Tables 639
Appendix C Tau Critical Values Table for Significance Level α 649
Appendix D General Partial Differentials of Typical Survey Observables 653
Appendix E Some Important Matrix Operations and Identities 661
Appendix F Commonly Used Abbreviations 669
References 671
Index 675
Provides a modern approach to least squares estimation and data analysis for undergraduate land surveying and geomatics programs
Rich in theory and concepts, this comprehensive book on least square estimation and data analysis provides examples that are designed to help students extend their knowledge to solving more practical problems. The sample problems are accompanied by suggested solutions, and are challenging, yet easy enough to manually work through using simple computing devices, and chapter objectives provide an overview of the material contained in each section.
Understanding Least Squares Estimation and Geomatics Data Analysis begins with an explanation of survey observables, observations, and their stochastic properties. It reviews matrix structure and construction and explains the needs for adjustment. Next, it discusses analysis and error propagation of survey observations, including the application of heuristic rule for covariance propagation. Then, the important elements of statistical distributions commonly used in geomatics are discussed. Main topics of the book include: concepts of datum definitions; the formulation and linearization of parametric, conditional and general model equations involving typical geomatics observables; geomatics problems; least squares adjustments of parametric, conditional and general models; confidence region estimation; problems of network design and pre-analysis; three-dimensional geodetic network adjustment; nuisance parameter elimination and the sequential least squares adjustment; post-adjustment data analysis and reliability; the problems of datum; mathematical filtering and prediction; an introduction to least squares collocation and the kriging methods; and more.
Contains ample concepts/theory and content, as well as practical and workable examples Based on the author's manual, which he developed as a complete and comprehensive book for his Adjustment of Surveying Measurements and Special Topics in Adjustments courses Provides geomatics undergraduates and geomatics professionals with required foundational knowledge An excellent companion to Precision Surveying: The Principles and Geomatics Practice Understanding Least Squares Estimation and Geomatics Data Analysis is recommended for undergraduates studying geomatics, and will benefit many readers from a variety of geomatics backgrounds, including practicing surveyors/engineers who are interested in least squares estimation and data analysis, geomatics researchers, and software developers for geomatics.