Generalized ordinary differential equations in abstract spaces and applications / edited by Everaldo M. Bonotto, Marcia Federson, Jacqueline G. Mesquita.

Contributor(s): Bonotto, Everaldo M [editor.] | Federson, Marcia [editor.] | Mesquita, Jacqueline G [editor.]
Language: English Publisher: Hoboken, NJ : Wiley, 2021Description: 1 online resourceContent type: text Media type: computer Carrier type: online resourceISBN: 9781119654933; 9781119655022; 1119655021Subject(s): Differential equationsGenre/Form: Electronic books.DDC classification: 515/.352 LOC classification: QA372Online resources: Full text is available at Wiley Online Library Click here to view
Contents:
Table of Contents List of Contributors xi Foreword xiii Preface xvii 1 Preliminaries 1 Everaldo M. Bonotto, Rodolfo Collegari, Márcia Federson, Jaqueline G. Mesquita, and Eduard Toon 1.1 Regulated Functions 2 1.1.1 Basic Properties 2 1.1.2 Equiregulated Sets 7 1.1.3 Uniform Convergence 9 1.1.4 Relatively Compact Sets 11 1.2 Functions of Bounded B-Variation 14 1.3 Kurzweil and Henstock Vector Integrals 19 1.3.1 Definitions 20 1.3.2 Basic Properties 25 1.3.3 Integration by Parts and Substitution Formulas 29 1.3.4 The Fundamental Theorem of Calculus 36 1.3.5 A Convergence Theorem 44 Appendix 1.A: The McShane Integral 44 2 The Kurzweil Integral 53 Everaldo M. Bonotto, Rodolfo Collegari, Márcia Federson, and Jaqueline G. Mesquita 2.1 The Main Background 54 2.1.1 Definition and Compatibility 54 2.1.2 Special Integrals 56 2.2 Basic Properties 57 2.3 Notes on Kapitza Pendulum 67 3 Measure Functional Differential Equations 71 Everaldo M. Bonotto, Márcia Federson, Miguel V. S. Frasson, Rogelio Grau, and Jaqueline G. Mesquita 3.1 Measure FDEs 74 3.2 Impulsive Measure FDEs 76 3.3 Functional Dynamic Equations on Time Scales 86 3.3.1 Fundamentals of Time Scales 87 3.3.2 The Perron Δ-integral 89 3.3.3 Perron Δ-integrals and Perron–Stieltjes integrals 90 3.3.4 MDEs and Dynamic Equations on Time Scales 98 3.3.5 Relations with Measure FDEs 99 3.3.6 Impulsive Functional Dynamic Equations on Time Scales 104 3.4 Averaging Methods 106 3.4.1 Periodic Averaging 107 3.4.2 Nonperiodic Averaging 118 3.5 Continuous Dependence on Time Scales 135 4 Generalized Ordinary Differential Equations 145 Everaldo M. Bonotto, Márcia Federson, and Jaqueline G. Mesquita 4.1 Fundamental Properties 146 4.2 Relations with Measure Differential Equations 153 4.3 Relations with Measure FDEs 160 5 Basic Properties of Solutions 173 Everaldo M. Bonotto, Márcia Federson, Luciene P. Gimenes (in memorian), Rogelio Grau, Jaqueline G. Mesquita, and Eduard Toon 5.1 Local Existence and Uniqueness of Solutions 174 5.1.1 Applications to Other Equations 178 5.2 Prolongation and Maximal Solutions 181 5.2.1 Applications to MDEs 191 5.2.2 Applications to Dynamic Equations on Time Scales 197 6 Linear Generalized Ordinary Differential Equations 205 Everaldo M. Bonotto, Rodolfo Collegari, Márcia Federson, and Miguel V. S. Frasson 6.1 The Fundamental Operator 207 6.2 A Variation-of-Constants Formula 209 6.3 Linear Measure FDEs 216 6.4 A Nonlinear Variation-of-Constants Formula for Measure FDEs 220 7 Continuous Dependence on Parameters 225 Suzete M. Afonso, Everaldo M. Bonotto, Márcia Federson, and Jaqueline G. Mesquita 7.1 Basic Theory for Generalized ODEs 226 7.2 Applications to Measure FDEs 236 8 StabilityTheory 241 Suzete M. Afonso, Fernanda Andrade da Silva, Everaldo M. Bonotto, Márcia Federson, Luciene P. Gimenes (in memorian), Rogelio Grau, Jaqueline G. Mesquita, and Eduard Toon 8.1 Variational Stability for Generalized ODEs 244 8.1.1 Direct Method of Lyapunov 246 8.1.2 Converse Lyapunov Theorems 247 8.2 Lyapunov Stability for Generalized ODEs 256 8.2.1 Direct Method of Lyapunov 257 8.3 Lyapunov Stability for MDEs 261 8.3.1 Direct Method of Lyapunov 263 8.4 Lyapunov Stability for Dynamic Equations on Time Scales 265 8.4.1 Direct Method of Lyapunov 267 8.5 Regular Stability for Generalized ODEs 272 8.5.1 Direct Method of Lyapunov 275 8.5.2 Converse Lyapunov Theorem 282 9 Periodicity 295 Marielle Ap. Silva, Everaldo M. Bonotto, Rodolfo Collegari, Márcia Federson, and Maria Carolina Mesquita 9.1 Periodic Solutions and Floquet’s Theorem 297 9.1.1 Linear Differential Systems with Impulses 303 9.2 (θ,T)-Periodic Solutions 307 9.2.1 An Application to MDEs 313 10 Averaging Principles 317 Márcia Federson and Jaqueline G. Mesquita 10.1 Periodic Averaging Principles 320 10.1.1 An Application to IDEs 325 10.2 Nonperiodic Averaging Principles 330 11 Boundedness of Solutions 341 Suzete M. Afonso, Fernanda Andrade da Silva, Everaldo M. Bonotto, Márcia Federson, Rogelio Grau, Jaqueline G. Mesquita, and Eduard Toon 11.1 Bounded Solutions and Lyapunov Functionals 342 11.2 An Application to MDEs 352 11.2.1 An Example 356 12 Control Theory 361 Fernanda Andrade da Silva, Márcia Federson, and Eduard Toon 12.1 Controllability and Observability 362 12.2 Applications to ODEs 365 13 Dichotomies 369 Everaldo M. Bonotto and Márcia Federson 13.1 Basic Theory for Generalized ODEs 370 13.2 Boundedness and Dichotomies 381 13.3 Applications to MDEs 391 13.4 Applications to IDEs 400 14 Topological Dynamics 407 Suzete M. Afonso, Marielle Ap. Silva, Everaldo M. Bonotto, and Márcia Federson 14.1 The Compactness of the Class F0(Ω,h) 408 14.2 Existence of a Local Semidynamical System 411 14.3 Existence of an Impulsive Semidynamical System 418 14.4 LaSalle’s Invariance Principle 423 14.5 Recursive Properties 425 15 Applications to Functional Differential Equations of Neutral Type 429 Fernando G. Andrade, Miguel V. S. Frasson, and Patricia H. Tacuri 15.1 Drops of History 429 15.2 FDEs of Neutral Type with Finite Delay 435 References 455 List of Symbols 471 Index 473
Summary: Generalized Ordinary Differential Equations in Abstract Spaces and Applications delivers a comprehensive treatment of new results of the theory of Generalized ODEs in abstract spaces. The book covers applications to other types of differential equations, including Measure Functional Differential Equations (measure FDEs). It presents a uniform collection of qualitative results of Generalized ODEs and offers readers an introduction to several theories, including ordinary differential equations, impulsive differential equations, functional differential equations, dynamical equations on time scales, and more.
Tags from this library: No tags from this library for this title. Log in to add tags.
    Average rating: 0.0 (0 votes)

Includes bibliographical references and index.

Table of Contents
List of Contributors xi

Foreword xiii

Preface xvii

1 Preliminaries 1
Everaldo M. Bonotto, Rodolfo Collegari, Márcia Federson, Jaqueline G. Mesquita, and Eduard Toon

1.1 Regulated Functions 2

1.1.1 Basic Properties 2

1.1.2 Equiregulated Sets 7

1.1.3 Uniform Convergence 9

1.1.4 Relatively Compact Sets 11

1.2 Functions of Bounded B-Variation 14

1.3 Kurzweil and Henstock Vector Integrals 19

1.3.1 Definitions 20

1.3.2 Basic Properties 25

1.3.3 Integration by Parts and Substitution Formulas 29

1.3.4 The Fundamental Theorem of Calculus 36

1.3.5 A Convergence Theorem 44

Appendix 1.A: The McShane Integral 44

2 The Kurzweil Integral 53
Everaldo M. Bonotto, Rodolfo Collegari, Márcia Federson, and Jaqueline G. Mesquita

2.1 The Main Background 54

2.1.1 Definition and Compatibility 54

2.1.2 Special Integrals 56

2.2 Basic Properties 57

2.3 Notes on Kapitza Pendulum 67

3 Measure Functional Differential Equations 71
Everaldo M. Bonotto, Márcia Federson, Miguel V. S. Frasson, Rogelio Grau, and Jaqueline G. Mesquita

3.1 Measure FDEs 74

3.2 Impulsive Measure FDEs 76

3.3 Functional Dynamic Equations on Time Scales 86

3.3.1 Fundamentals of Time Scales 87

3.3.2 The Perron Δ-integral 89

3.3.3 Perron Δ-integrals and Perron–Stieltjes integrals 90

3.3.4 MDEs and Dynamic Equations on Time Scales 98

3.3.5 Relations with Measure FDEs 99

3.3.6 Impulsive Functional Dynamic Equations on Time Scales 104

3.4 Averaging Methods 106

3.4.1 Periodic Averaging 107

3.4.2 Nonperiodic Averaging 118

3.5 Continuous Dependence on Time Scales 135

4 Generalized Ordinary Differential Equations 145
Everaldo M. Bonotto, Márcia Federson, and Jaqueline G. Mesquita

4.1 Fundamental Properties 146

4.2 Relations with Measure Differential Equations 153

4.3 Relations with Measure FDEs 160

5 Basic Properties of Solutions 173
Everaldo M. Bonotto, Márcia Federson, Luciene P. Gimenes (in memorian), Rogelio Grau, Jaqueline G. Mesquita, and Eduard Toon

5.1 Local Existence and Uniqueness of Solutions 174

5.1.1 Applications to Other Equations 178

5.2 Prolongation and Maximal Solutions 181

5.2.1 Applications to MDEs 191

5.2.2 Applications to Dynamic Equations on Time Scales 197

6 Linear Generalized Ordinary Differential Equations 205
Everaldo M. Bonotto, Rodolfo Collegari, Márcia Federson, and Miguel V. S. Frasson

6.1 The Fundamental Operator 207

6.2 A Variation-of-Constants Formula 209

6.3 Linear Measure FDEs 216

6.4 A Nonlinear Variation-of-Constants Formula for Measure FDEs 220

7 Continuous Dependence on Parameters 225
Suzete M. Afonso, Everaldo M. Bonotto, Márcia Federson, and Jaqueline G. Mesquita

7.1 Basic Theory for Generalized ODEs 226

7.2 Applications to Measure FDEs 236

8 StabilityTheory 241
Suzete M. Afonso, Fernanda Andrade da Silva, Everaldo M. Bonotto, Márcia Federson, Luciene P. Gimenes (in memorian), Rogelio Grau, Jaqueline G. Mesquita, and Eduard Toon

8.1 Variational Stability for Generalized ODEs 244

8.1.1 Direct Method of Lyapunov 246

8.1.2 Converse Lyapunov Theorems 247

8.2 Lyapunov Stability for Generalized ODEs 256

8.2.1 Direct Method of Lyapunov 257

8.3 Lyapunov Stability for MDEs 261

8.3.1 Direct Method of Lyapunov 263

8.4 Lyapunov Stability for Dynamic Equations on Time Scales 265

8.4.1 Direct Method of Lyapunov 267

8.5 Regular Stability for Generalized ODEs 272

8.5.1 Direct Method of Lyapunov 275

8.5.2 Converse Lyapunov Theorem 282

9 Periodicity 295
Marielle Ap. Silva, Everaldo M. Bonotto, Rodolfo Collegari, Márcia Federson, and Maria Carolina Mesquita

9.1 Periodic Solutions and Floquet’s Theorem 297

9.1.1 Linear Differential Systems with Impulses 303

9.2 (θ,T)-Periodic Solutions 307

9.2.1 An Application to MDEs 313

10 Averaging Principles 317
Márcia Federson and Jaqueline G. Mesquita

10.1 Periodic Averaging Principles 320

10.1.1 An Application to IDEs 325

10.2 Nonperiodic Averaging Principles 330

11 Boundedness of Solutions 341
Suzete M. Afonso, Fernanda Andrade da Silva, Everaldo M. Bonotto, Márcia Federson, Rogelio Grau, Jaqueline G. Mesquita, and Eduard Toon 11.1 Bounded Solutions and Lyapunov Functionals 342

11.2 An Application to MDEs 352

11.2.1 An Example 356

12 Control Theory 361
Fernanda Andrade da Silva, Márcia Federson, and Eduard Toon

12.1 Controllability and Observability 362

12.2 Applications to ODEs 365

13 Dichotomies 369
Everaldo M. Bonotto and Márcia Federson

13.1 Basic Theory for Generalized ODEs 370

13.2 Boundedness and Dichotomies 381

13.3 Applications to MDEs 391

13.4 Applications to IDEs 400

14 Topological Dynamics 407
Suzete M. Afonso, Marielle Ap. Silva, Everaldo M. Bonotto, and Márcia Federson

14.1 The Compactness of the Class F0(Ω,h) 408

14.2 Existence of a Local Semidynamical System 411

14.3 Existence of an Impulsive Semidynamical System 418

14.4 LaSalle’s Invariance Principle 423

14.5 Recursive Properties 425

15 Applications to Functional Differential Equations of Neutral Type 429
Fernando G. Andrade, Miguel V. S. Frasson, and Patricia H. Tacuri

15.1 Drops of History 429

15.2 FDEs of Neutral Type with Finite Delay 435

References 455

List of Symbols 471

Index 473

Generalized Ordinary Differential Equations in Abstract Spaces and Applications delivers a comprehensive treatment of new results of the theory of Generalized ODEs in abstract spaces. The book covers applications to other types of differential equations, including Measure Functional Differential Equations (measure FDEs). It presents a uniform collection of qualitative results of Generalized ODEs and offers readers an introduction to several theories, including ordinary differential equations, impulsive differential equations, functional differential equations, dynamical equations on time scales, and more.

About the Author
Everaldo M. Bonotto, PhD, is Associate Professor in the Department of ­Applied Mathematics and Statistics, at ICMC-Universidade de São Paulo, São Carlos, SP, Brazil.

Márcia Federson, PhD, is Full Professor in the Department of Mathematics at ICMC-Universidade de São Paulo, São Carlos, SP, Brazil.

Jaqueline G. Mesquita, PhD, is Assistant Professor at Department of Mathematics at the University of Brasília, Brasília, DF, Brazil.

There are no comments for this item.

to post a comment.