Introduction to finite element analysis : formulation, verification and validation / Barna Szabo, Ivo Babuska.
By: Szabo, B. A. (Barna Aladar)
Contributor(s): Babuska, Ivo
Language: English Series: Wiley series in computational mechanics: Publisher: Chichester : Wiley, 2011Description: 1 online resource (xviii, 364 pages) : illustrationsContent type: text Media type: computer Carrier type: online resourceISBN: 9780470977286; 0470977280; 9781119993827; 1119993822; 9781119993834; 1119993830; 9781119993483; 1119993482; 9781119993490; 1119993490Subject(s): Finite element methodGenre/Form: Electronic books.DDC classification: 620.001/51825 LOC classification: TA347.F5 | S979 2011Online resources: Full text is available at Wiley Online Library Click here to viewItem type | Current location | Home library | Call number | Status | Date due | Barcode | Item holds |
---|---|---|---|---|---|---|---|
EBOOK | COLLEGE LIBRARY | COLLEGE LIBRARY | 620.00151825 Sz12 2011 (Browse shelf) | Available | CL-52142 |
Includes bibliographical references and index.
Table of Contents
About the Authors.
Series Preface.
Preface.
1 Introduction.
1.1 Numerical simulation.
1.2 Why is numerical accuracy important?
1.3 Chapter summary.
2 An outline of the finite element method.
2.1 Mathematical models in one dimension.
2.2 Approximate solution.
2.3 Generalized formulation in one dimension.
2.4 Finite element approximations.
2.5 FEM in one dimension.
2.6 Properties of the generalized formulation.
2.7 Error estimation based on extrapolation.
2.8 Extraction methods.
2.9 Laboratory exercises.
2.10 Chapter summary.
3 Formulation of mathematical models.
3.1 Notation.
3.2 Heat conduction.
3.3 The scalar elliptic boundary value problem.
3.4 Linear elasticity.
3.5 Incompressible elastic materials.
3.6 Stokes' flow.
3.7 The hierarchic view of mathematical models.
3.8 Chapter summary.
4 Generalized formulations.
4.1 The scalar elliptic problem.
4.2 The principle of virtual work.
4.3 Elastostatic problems.
4.4 Elastodynamic models.
4.5 Incompressible materials.
4.6 Chapter summary.
5 Finite element spaces.
5.1 Standard elements in two dimensions.
5.2 Standard polynomial spaces.
5.3 Shape functions.
5.4 Mapping functions in two dimensions.
5.5 Elements in three dimensions.
5.6 Integration and differentiation.
5.7 Stiffness matrices and load vectors.
5.8 Chapter summary.
6 Regularity and rates of convergence.
6.1 Regularity.
6.2 Classification.
6.3 The neighborhood of singular points.
6.4 Rates of convergence.
6.5 Chapter summary.
7 Computation and verification of data.
7.1 Computation of the solution and its first derivatives.
7.2 Nodal forces.
7.3 Verification of computed data.
7.4 Flux and stress intensity factors.
7.5 Chapter summary.
8 What should be computed and why?
8.1 Basic assumptions.
8.2 Conceptualization: drivers of damage accumulation.
8.3 Classical models of metal fatigue.
8.4 Linear elastic fracture mechanics.
8.5 On the existence of a critical distance.
8.6 Driving forces for damage accumulation.
8.7 Cycle counting.
8.8 Validation.
8.9 Chapter summary.
9 Beams, plates and shells.
9.1 Beams.
9.2 Plates.
9.3 Shells.
9.4 The Oak Ridge experiments.
9.5 Chapter summary.
10 Nonlinear models.
10.1 Heat conduction.
10.2 Solid mechanics.
10.3 Chapter summary.
A Definitions.
A.1 Norms and seminorms.
A.2 Normed linear spaces.
A.3 Linear functionals.
A.4 Bilinear forms.
A.5 Convergence.
A.6 Legendre polynomials.
A.7 Analytic functions.
A.8 The Schwarz inequality for integrals.
B Numerical quadrature.
B.1 Gaussian quadrature.
B.2 Gauss–Lobatto quadrature.
C Properties of the stress tensor.
C.1 The traction vector.
C.2 Principal stresses.
C.3 Transformation of vectors.
C.4 Transformation of stresses.
D Computation of stress intensity factors.
D.1 The contour integral method.
D.2 The energy release rate.
E Saint-Venant's principle.
E.1 Green's function for the Laplace equation.
E.2 Model problem.
F Solutions for selected exercises.
Bibliography.
Index.
"The authors believe that users of finite element analysis (FEA) software products must have a basic understanding of how mathematical models are constructed; what are the essential assumptions incorporated in a mathematical model; what is the algorithmic structure of the finite element solution; how the accuracy of the computed data can be assessed, and how to avoid common pitfalls and mistakes. The primary objective in assembling the material presented in the book is to provide a basic working knowledge of the finite element method. A professional quality software product will also be made available to the reader providing over 400 parameter-controlled examples of solved problems."-- Provided by publisher.
"The primary objective in assembling the material presented in the book is to provide a basic working knowledge of the finite element method"-- Provided by publisher.
About the Author
Barna Szabó is co-founder and president of Engineering Software Research and Development, Inc. (ESRD), the company that produces the professional finite element analysis software StressCheck®. Prior to his retirement from the School of Engineering and Applied Science of Washington University in 2006 he served as the Albert P. and Blanche Y. Greensfelder Professor of Mechanics. His primary research interest is assurance of quality and reliability in the numerical stimulation of structural and mechanical systems by the finite element method. He has published over 150 papers in refereed technical journals. Several of them in collaboration with Professor Ivo Babuška, with whom he also published a book on finite element analysis (John Wiley & Sons, Inc., 1991). He is a founding member and Fellow of the US Association for Computational Mechanics. Among his honors are election to the Hungarian Academy of Sciences as External Member and an honorary doctorate.
Ivo Babuška’s research has been concerned mainly with the reliability of computational analysis of mathematical problems and their applications, especially by the finite element method. He was the first to address a posteriori error estimation and adaptivity in finite element analysis. His research papers on these subjects published in the 1970s have been widely cited. His joint work with Barna Szabó on the p-version of the finite element method established the theoretical foundations and the algorithmic structure for this method. His recent work has been concerned with the mathematical formulation and treatment of uncertainties which are present in every mathematical model. In recognition of his numerous important contributions, Professor Babuška received may honors, which include honorary doctorates, medals and prizes and election to prestigious academies.
There are no comments for this item.