Bioinformatics and medical applications : big data using deep learning algorithms / edited by A. Suresh [and more]

Contributor(s): Suresh, A
Language: English Publisher: Hoboken, NJ : Wiley : Beverly, MA : Scrivener Publishing, 2022Description: 1 online resourceContent type: text Media type: computer Carrier type: online resourceISBN: 9781119791836 ; 9781119792673; 1119792673; 9781119792666; 1119792665Subject(s): Medical informatics | Bioinformatics | Big data | Deep learning (Machine learning) | Computational BiologyGenre/Form: Electronic books.Additional physical formats: Print version:: No titleDDC classification: 610.285 LOC classification: R858 | .B56 2022Online resources: Link text Full text is available at Wiley Online Library Click here to view
Contents:
Table of Contents Preface xv 1 Probabilistic Optimization of Machine Learning Algorithms for Heart Disease Prediction 1 Jaspreet Kaur, Bharti Joshi and Rajashree Shedge 1.1 Introduction 2 1.1.1 Scope and Motivation 3 1.2 Literature Review 4 1.2.1 Comparative Analysis 5 1.2.2 Survey Analysis 5 1.3 Tools and Techniques 10 1.3.1 Description of Dataset 11 1.3.2 Machine Learning Algorithm 12 1.3.3 Decision Tree 14 1.3.4 Random Forest 15 1.3.5 Naive Bayes Algorithm 16 1.3.6 K Means Algorithm 18 1.3.7 Ensemble Method 18 1.3.7.1 Bagging 19 1.3.7.2 Boosting 19 1.3.7.3 Stacking 19 1.3.7.4 Majority Vote 19 1.4 Proposed Method 20 1.4.1 Experiment and Analysis 20 1.4.2 Method 22 1.5 Conclusion 25 References 26 2 Cancerous Cells Detection in Lung Organs of Human Body: IoT-Based Healthcare 4.0 Approach 29 Rohit Rastogi, D.K. Chaturvedi, Sheelu Sagar, Neeti Tandon and Mukund Rastogi 2.1 Introduction 30 2.1.1 Motivation to the Study 30 2.1.1.1 Problem Statements 31 2.1.1.2 Authors’ Contributions 31 2.1.1.3 Research Manuscript Organization 31 2.1.1.4 Definitions 32 2.1.2 Computer-Aided Diagnosis System (CADe or CADx) 32 2.1.3 Sensors for the Internet of Things 32 2.1.4 Wireless and Wearable Sensors for Health Informatics 33 2.1.5 Remote Human’s Health and Activity Monitoring 33 2.1.6 Decision-Making Systems for Sensor Data 33 2.1.7 Artificial Intelligence and Machine Learning for Health Informatics 34 2.1.8 Health Sensor Data Management 34 2.1.9 Multimodal Data Fusion for Healthcare 35 2.1.10 Heterogeneous Data Fusion and Context-Aware Systems: A Context-Aware Data Fusion Approach for Health-IoT 35 2.2 Literature Review 35 2.3 Proposed Systems 37 2.3.1 Framework or Architecture of the Work 38 2.3.2 Model Steps and Parameters 38 2.3.3 Discussions 39 2.4 Experimental Results and Analysis 39 2.4.1 Tissue Characterization and Risk Stratification 39 2.4.2 Samples of Cancer Data and Analysis 40 2.5 Novelties 42 2.6 Future Scope, Limitations, and Possible Applications 42 2.7 Recommendations and Consideration 43 2.8 Conclusions 43 References 43 3 Computational Predictors of the Predominant Protein Function: SARS-CoV-2 Case 47 Carlos Polanco, Manlio F. Márquez and Gilberto Vargas-Alarcón 3.1 Introduction 48 3.2 Human Coronavirus Types 49 3.3 The SARS-CoV-2 Pandemic Impact 50 3.3.1 RNA Virus vs DNA Virus 51 3.3.2 The Coronaviridae Family 51 3.3.3 The SARS-CoV-2 Structural Proteins 52 3.3.4 Protein Representations 52 3.4 Computational Predictors 53 3.4.1 Supervised Algorithms 53 3.4.2 Non-Supervised Algorithms 54 3.5 Polarity Index Method® 54 3.5.1 The PIM® Profile 54 3.5.2 Advantages 55 3.5.3 Disadvantages 55 3.5.4 SARS-CoV-2 Recognition Using PIM® Profile 55 3.6 Future Implications 59 3.7 Acknowledgments 60 References 60 4 Deep Learning in Gait Abnormality Detection: Principles and Illustrations 63 Saikat Chakraborty, Sruti Sambhavi and Anup Nandy 4.1 Introduction 63 4.2 Background 65 4.2.1 LSTM 65 4.2.1.1 Vanilla LSTM 65 4.2.1.2 Bidirectional LSTM 66 4.3 Related Works 67 4.4 Methods 68 4.4.1 Data Collection and Analysis 68 4.4.2 Results and Discussion 69 4.5 Conclusion and Future Work 71 4.6 Acknowledgments 71 References 71 5 Broad Applications of Network Embeddings in Computational Biology, Genomics, Medicine, and Health 73 Akanksha Jaiswar, Devender Arora, Manisha Malhotra, Abhimati Shukla and Nivedita Rai 5.1 Introduction 74 5.2 Types of Biological Networks 76 5.3 Methodologies in Network Embedding 76 5.4 Attributed and Non-Attributed Network Embedding 82 5.5 Applications of Network Embedding in Computational Biology 83 5.5.1 Understanding Genomic and Protein Interaction via Network Alignment 83 5.5.2 Pharmacogenomics 84 5.5.2.1 Drug-Target Interaction Prediction 84 5.5.2.2 Drug-Drug Interaction 84 5.5.2.3 Drug-Disease Interaction Prediction 85 5.5.2.4 Analysis of Adverse Drug Reaction 85 5.5.3 Function Prediction 86 5.5.4 Community Detection 86 5.5.5 Network Denoising 87 5.5.6 Analysis of Multi-Omics Data 87 5.6 Limitations of Network Embedding in Biology 87 5.7 Conclusion and Outlook 89 References 89 6 Heart Disease Classification Using Regional Wall Thickness by Ensemble Classifier 99 Prakash J., Vinoth Kumar B. and Sandhya R. 6.1 Introduction 100 6.2 Related Study 101 6.3 Methodology 103 6.3.1 Pre-Processing 103 6.3.2 Region of Interest Extraction 104 6.3.3 Segmentation 105 6.3.4 Feature Extraction 106 6.3.5 Disease Classification 107 6.4 Implementation and Result Analysis 108 6.4.1 Dataset Description 108 6.4.2 Testbed 108 6.4.3 Discussion 108 6.4.3.1 K-Fold Cross-Validation 110 6.4.3.2 Confusion Matrix 110 6.5 Conclusion 115 References 115 7 Deep Learning for Medical Informatics and Public Health 117 K. Aditya Shastry, Sanjay H. A., Lakshmi M. and Preetham N. 7.1 Introduction 118 7.2 Deep Learning Techniques in Medical Informatics and Public Health 121 7.2.1 Autoencoders 122 7.2.2 Recurrent Neural Network 123 7.2.3 Convolutional Neural Network (CNN) 124 7.2.4 Deep Boltzmann Machine 126 7.2.5 Deep Belief Network 127 7.3 Applications of Deep Learning in Medical Informatics and Public Health 128 7.3.1 The Use of DL for Cancer Diagnosis 128 7.3.2 DL in Disease Prediction and Treatment 129 7.3.3 Future Applications 133 7.4 Open Issues Concerning DL in Medical Informatics and Public Health 135 7.5 Conclusion 139 References 140 8 An Insight Into Human Pose Estimation and Its Applications 147 Shambhavi Mishra, Janamejaya Channegowda and Kasina Jyothi Swaroop 8.1 Foundations of Human Pose Estimation 147 8.2 Challenges to Human Pose Estimation 149 8.2.1 Motion Blur 150 8.2.2 Indistinct Background 151 8.2.3 Occlusion or Self-Occlusion 151 8.2.4 Lighting Conditions 151 8.3 Analyzing the Dimensions 152 8.3.1 2D Human Pose Estimation 152 8.3.1.1 Single-Person Pose Estimation 153 8.3.1.2 Multi-Person Pose Estimation 153 8.3.2 3D Human Pose Estimation 153 8.4 Standard Datasets for Human Pose Estimation 154 8.4.1 Pascal VOC (Visual Object Classes) Dataset 156 8.4.2 KTH Multi-View Football Dataset I 156 8.4.3 KTH Multi-View Football Dataset II 156 8.4.4 MPII Human Pose Dataset 157 8.4.5 BBC Pose 157 8.4.6 COCO Dataset 157 8.4.7 J-HMDB Dataset 158 8.4.8 Human3.6M Dataset 158 8.4.9 DensePose 158 8.4.10 AMASS Dataset 159 8.5 Deep Learning Revolutionizing Pose Estimation 159 8.5.1 Approaches in 2D Human Pose Estimation 159 8.5.2 Approaches in 3D Human Pose Estimation 163 8.6 Application of Human Pose Estimation in Medical Domains 165 8.7 Conclusion 166 References 167 9 Brain Tumor Analysis Using Deep Learning: Sensor and IoT-Based Approach for Futuristic Healthcare 171 Rohit Rastogi, D.K. Chaturvedi, Sheelu Sagar, Neeti Tandon and Akshit Rajan Rastogi 9.1 Introduction 172 9.1.1 Brain Tumor 172 9.1.2 Big Data Analytics in Health Informatics 172 9.1.3 Machine Learning in Healthcare 173 9.1.4 Sensors for Internet of Things 173 9.1.5 Challenges and Critical Issues of IoT in Healthcare 174 9.1.6 Machine Learning and Artificial Intelligence for Health Informatics 174 9.1.7 Health Sensor Data Management 175 9.1.8 Multimodal Data Fusion for Healthcare 175 9.1.9 Heterogeneous Data Fusion and Context-Aware Systems a Context-Aware Data Fusion Approach for Health-IoT 176 9.1.10 Role of Technology in Addressing the Problem of Integration of Healthcare System 176 9.2 Literature Survey 177 9.3 System Design and Methodology 179 9.3.1 System Design 179 9.3.2 CNN Architecture 180 9.3.3 Block Diagram 181 9.3.4 Algorithm(s) 181 9.3.5 Our Experimental Results, Interpretation, and Discussion 183 9.3.6 Implementation Details 183 9.3.7 Snapshots of Interfaces 184 9.3.8 Performance Evaluation 186 9.3.9 Comparison with Other Algorithms 186 9.4 Novelty in Our Work 186 9.5 Future Scope, Possible Applications, and Limitations 188 9.6 Recommendations and Consideration 188 9.7 Conclusions 188 References 189 10 Study of Emission From Medicinal Woods to Curb Threats of Pollution and Diseases: Global Healthcare Paradigm Shift in 21st Century 191 Rohit Rastogi, Mamta Saxena, Devendra Kr. Chaturvedi, Sheelu Sagar, Neha Gupta, Harshit Gupta, Akshit Rajan Rastogi, Divya Sharma, Manu Bhardwaj and Pranav Sharma 10.1 Introduction 192 10.1.1 Scenario of Pollution and Need to Connect with Indian Culture 192 10.1.2 Global Pollution Scenario 192 10.1.3 Indian Crisis on Pollution and Worrying Stats 193 10.1.4 Efforts Made to Curb Pollution World Wide 194 10.1.5 Indian Ancient Vedic Sciences to Curb Pollution and Related Disease 196 10.1.6 The Yajna Science: A Boon to Human Race From Rishi-Muni 196 10.1.7 The Science of Mantra Associated With Yajna and Its Scientific Effects 197 10.1.8 Effect of Different Woods and Cow Dung Used in Yajna 197 10.1.9 Use of Sensors and IoT to Record Experimental Data 198 10.1.10 Analysis and Pattern Recognition by ML and AI 199 10.2 Literature Survey 200 10.3 The Methodology and Protocols Followed 201 10.4 Experimental Setup of an Experiment 202 10.5 Results and Discussions 202 10.5.1 Mango 202 10.5.2 Bargad 203 10.6 Applications of Yagya and Mantra Therapy in Pollution Control and Its Significance 207 10.7 Future Research Perspectives 207 10.8 Novelty of Our Research 208 10.9 Recommendations 208 10.10 Conclusions 209 References 209 11 An Economical Machine Learning Approach for Anomaly Detection in IoT Environment 215 Ambika N. 11.1 Introduction 215 11.2 Literature Survey 218 11.3 Proposed Work 229 11.4 Analysis of the Work 230 11.5 Conclusion 231 References 231 12 Indian Science of Yajna and Mantra to Cure Different Diseases: An Analysis Amidst Pandemic With a Simulated Approach 235 Rohit Rastogi, Mamta Saxena, Devendra Kumar Chaturvedi, Mayank Gupta, Puru Jain, Rishabh Jain, Mohit Jain, Vishal Sharma, Utkarsh Sangam, Parul Singhal and Priyanshi Garg 12.1 Introduction 236 12.1.1 Different Types of Diseases 236 12.1.1.1 Diabetes (Madhumeha) and Its Types 236 12.1.1.2 TTH and Stress 237 12.1.1.3 Anxiety 237 12.1.1.4 Hypertension 237 12.1.2 Machine Vision 237 12.1.2.1 Medical Images and Analysis 238 12.1.2.2 Machine Learning in Healthcare 238 12.1.2.3 Artificial Intelligence in Healthcare 239 12.1.3 Big Data and Internet of Things (IoT) 239 12.1.4 Machine Learning in Association with Data Science and Analytics 239 12.1.5 Yajna Science 240 12.1.6 Mantra Science 240 12.1.6.1 Positive Impact of Recital of Gayatri Mantra and OM Chanting 241 12.1.6.2 Significance of Mantra on Indian Culture and Mythology 241 12.1.7 Usefulness and Positive Aspect of Yoga Asanas and Pranayama 241 12.1.8 Effects of Yajna and Mantra on Human Health 242 12.1.9 Impact of Yajna in Reducing the Atmospheric Solution 242 12.1.10 Scientific Study on Impact of Yajna on Air Purification 243 12.1.11 Scientific Meaning of Religious and Manglik Signs 244 12.2 Literature Survey 244 12.3 Methodology 246 12.4 Results and Discussion 249 12.5 Interpretations and Analysis 250 12.6 Novelty in Our Work 258 12.7 Recommendations 259 12.8 Future Scope and Possible Applications 260 12.9 Limitations 261 12.10 Conclusions 261 12.11 Acknowledgments 262 References 262 13 Collection and Analysis of Big Data From Emerging Technologies in Healthcare 269 Nagashri K., Jayalakshmi D. S. and Geetha J. 13.1 Introduction 269 13.2 Data Collection 271 13.2.1 Emerging Technologies in Healthcare and Its Applications 271 13.2.1.1 RFID 272 13.2.1.2 WSN 273 13.2.1.3 IoT 274 13.2.2 Issues and Challenges in Data Collection 277 13.2.2.1 Data Quality 277 13.2.2.2 Data Quantity 277 13.2.2.3 Data Access 278 13.2.2.4 Data Provenance 278 13.2.2.5 Security 278 13.2.2.6 Other Challenges 279 13.3 Data Analysis 280 13.3.1 Data Analysis Approaches 280 13.3.1.1 Machine Learning 280 13.3.1.2 Deep Learning 281 13.3.1.3 Natural Language Processing 281 13.3.1.4 High-Performance Computing 281 13.3.1.5 Edge-Fog Computing 282 13.3.1.6 Real-Time Analytics 282 13.3.1.7 End-User Driven Analytics 282 13.3.1.8 Knowledge-Based Analytics 283 13.3.2 Issues and Challenges in Data Analysis 283 13.3.2.1 Multi-Modal Data 283 13.3.2.2 Complex Domain Knowledge 283 13.3.2.3 Highly Competent End-Users 283 13.3.2.4 Supporting Complex Decisions 283 13.3.2.5 Privacy 284 13.3.2.6 Other Challenges 284 13.4 Research Trends 284 13.5 Conclusion 286 References 286 14 A Complete Overview of Sign Language Recognition and Translation Systems 289 Kasina Jyothi Swaroop, Janamejaya Channegowda and Shambhavi Mishra 14.1 Introduction 289 14.2 Sign Language Recognition 290 14.2.1 Fundamentals of Sign Language Recognition 290 14.2.2 Requirements for the Sign Language Recognition 292 14.3 Dataset Creation 293 14.3.1 American Sign Language 293 14.3.2 German Sign Language 296 14.3.3 Arabic Sign Language 297 14.3.4 Indian Sign Language 298 14.4 Hardware Employed for Sign Language Recognition 299 14.4.1 Glove/Sensor-Based Systems 299 14.4.2 Microsoft Kinect–Based Systems 300 14.5 Computer Vision–Based Sign Language Recognition and Translation Systems 302 14.5.1 Image Processing Techniques for Sign Language Recognition 302 14.5.2 Deep Learning Methods for Sign Language Recognition 304 14.5.3 Pose Estimation Application to Sign Language Recognition 305 14.5.4 Temporal Information in Sign Language Recognition and Translation 306 14.6 Sign Language Translation System—A Brief Overview 307 14.7 Conclusion 309 References 310 Index 315
Summary: BIOINFORMATICS AND MEDICAL APPLICATIONS The main topics addressed in this book are big data analytics problems in bioinformatics research such as microarray data analysis, sequence analysis, genomics-based analytics, disease network analysis, techniques for big data analytics, and health information technology. Bioinformatics and Medical Applications: Big Data Using Deep Learning Algorithms analyses massive biological datasets using computational approaches and the latest cutting-edge technologies to capture and interpret biological data. The book delivers various bioinformatics computational methods used to identify diseases at an early stage by assembling cutting-edge resources into a single collection designed to enlighten the reader on topics focusing on computer science, mathematics, and biology. In modern biology and medicine, bioinformatics is critical for data management. This book explains the bioinformatician's important tools and examines how they are used to evaluate biological data and advance disease knowledge. The editors have curated a distinguished group of perceptive and concise chapters that presents the current state of medical treatments and systems and offers emerging solutions for a more personalized approach to healthcare. Applying deep learning techniques for data-driven solutions in health information allows automated analysis whose method can be more advantageous in supporting the problems arising from medical and health-related information. Audience The primary audience for the book includes specialists, researchers, postgraduates, designers, experts, and engineers, who are occupied with biometric research and security-related issues.
Tags from this library: No tags from this library for this title. Log in to add tags.
    Average rating: 0.0 (0 votes)

Table of Contents

Preface xv

1 Probabilistic Optimization of Machine Learning Algorithms for Heart Disease Prediction 1
Jaspreet Kaur, Bharti Joshi and Rajashree Shedge

1.1 Introduction 2

1.1.1 Scope and Motivation 3

1.2 Literature Review 4

1.2.1 Comparative Analysis 5

1.2.2 Survey Analysis 5

1.3 Tools and Techniques 10

1.3.1 Description of Dataset 11

1.3.2 Machine Learning Algorithm 12

1.3.3 Decision Tree 14

1.3.4 Random Forest 15

1.3.5 Naive Bayes Algorithm 16

1.3.6 K Means Algorithm 18

1.3.7 Ensemble Method 18

1.3.7.1 Bagging 19

1.3.7.2 Boosting 19

1.3.7.3 Stacking 19

1.3.7.4 Majority Vote 19

1.4 Proposed Method 20

1.4.1 Experiment and Analysis 20

1.4.2 Method 22

1.5 Conclusion 25

References 26

2 Cancerous Cells Detection in Lung Organs of Human Body: IoT-Based Healthcare 4.0 Approach 29
Rohit Rastogi, D.K. Chaturvedi, Sheelu Sagar, Neeti Tandon and Mukund Rastogi

2.1 Introduction 30

2.1.1 Motivation to the Study 30

2.1.1.1 Problem Statements 31

2.1.1.2 Authors’ Contributions 31

2.1.1.3 Research Manuscript Organization 31

2.1.1.4 Definitions 32

2.1.2 Computer-Aided Diagnosis System (CADe or CADx) 32

2.1.3 Sensors for the Internet of Things 32

2.1.4 Wireless and Wearable Sensors for Health Informatics 33

2.1.5 Remote Human’s Health and Activity Monitoring 33

2.1.6 Decision-Making Systems for Sensor Data 33

2.1.7 Artificial Intelligence and Machine Learning for Health Informatics 34

2.1.8 Health Sensor Data Management 34

2.1.9 Multimodal Data Fusion for Healthcare 35

2.1.10 Heterogeneous Data Fusion and Context-Aware Systems: A Context-Aware Data Fusion Approach for Health-IoT 35

2.2 Literature Review 35

2.3 Proposed Systems 37

2.3.1 Framework or Architecture of the Work 38

2.3.2 Model Steps and Parameters 38

2.3.3 Discussions 39

2.4 Experimental Results and Analysis 39

2.4.1 Tissue Characterization and Risk Stratification 39

2.4.2 Samples of Cancer Data and Analysis 40

2.5 Novelties 42

2.6 Future Scope, Limitations, and Possible Applications 42

2.7 Recommendations and Consideration 43

2.8 Conclusions 43

References 43

3 Computational Predictors of the Predominant Protein Function: SARS-CoV-2 Case 47
Carlos Polanco, Manlio F. Márquez and Gilberto Vargas-Alarcón

3.1 Introduction 48

3.2 Human Coronavirus Types 49

3.3 The SARS-CoV-2 Pandemic Impact 50

3.3.1 RNA Virus vs DNA Virus 51

3.3.2 The Coronaviridae Family 51

3.3.3 The SARS-CoV-2 Structural Proteins 52

3.3.4 Protein Representations 52

3.4 Computational Predictors 53

3.4.1 Supervised Algorithms 53

3.4.2 Non-Supervised Algorithms 54

3.5 Polarity Index Method® 54

3.5.1 The PIM® Profile 54

3.5.2 Advantages 55

3.5.3 Disadvantages 55

3.5.4 SARS-CoV-2 Recognition Using PIM® Profile 55

3.6 Future Implications 59

3.7 Acknowledgments 60

References 60

4 Deep Learning in Gait Abnormality Detection: Principles and Illustrations 63
Saikat Chakraborty, Sruti Sambhavi and Anup Nandy

4.1 Introduction 63

4.2 Background 65

4.2.1 LSTM 65

4.2.1.1 Vanilla LSTM 65

4.2.1.2 Bidirectional LSTM 66

4.3 Related Works 67

4.4 Methods 68

4.4.1 Data Collection and Analysis 68

4.4.2 Results and Discussion 69

4.5 Conclusion and Future Work 71

4.6 Acknowledgments 71

References 71

5 Broad Applications of Network Embeddings in Computational Biology, Genomics, Medicine, and Health 73
Akanksha Jaiswar, Devender Arora, Manisha Malhotra, Abhimati Shukla and Nivedita Rai

5.1 Introduction 74

5.2 Types of Biological Networks 76

5.3 Methodologies in Network Embedding 76

5.4 Attributed and Non-Attributed Network Embedding 82

5.5 Applications of Network Embedding in Computational Biology 83

5.5.1 Understanding Genomic and Protein Interaction via Network Alignment 83

5.5.2 Pharmacogenomics 84

5.5.2.1 Drug-Target Interaction Prediction 84

5.5.2.2 Drug-Drug Interaction 84

5.5.2.3 Drug-Disease Interaction Prediction 85

5.5.2.4 Analysis of Adverse Drug Reaction 85

5.5.3 Function Prediction 86

5.5.4 Community Detection 86

5.5.5 Network Denoising 87

5.5.6 Analysis of Multi-Omics Data 87

5.6 Limitations of Network Embedding in Biology 87

5.7 Conclusion and Outlook 89

References 89

6 Heart Disease Classification Using Regional Wall Thickness by Ensemble Classifier 99
Prakash J., Vinoth Kumar B. and Sandhya R.

6.1 Introduction 100

6.2 Related Study 101

6.3 Methodology 103

6.3.1 Pre-Processing 103

6.3.2 Region of Interest Extraction 104

6.3.3 Segmentation 105

6.3.4 Feature Extraction 106

6.3.5 Disease Classification 107

6.4 Implementation and Result Analysis 108

6.4.1 Dataset Description 108

6.4.2 Testbed 108

6.4.3 Discussion 108

6.4.3.1 K-Fold Cross-Validation 110

6.4.3.2 Confusion Matrix 110

6.5 Conclusion 115

References 115

7 Deep Learning for Medical Informatics and Public Health 117
K. Aditya Shastry, Sanjay H. A., Lakshmi M. and Preetham N.

7.1 Introduction 118

7.2 Deep Learning Techniques in Medical Informatics and Public Health 121

7.2.1 Autoencoders 122

7.2.2 Recurrent Neural Network 123

7.2.3 Convolutional Neural Network (CNN) 124

7.2.4 Deep Boltzmann Machine 126

7.2.5 Deep Belief Network 127

7.3 Applications of Deep Learning in Medical Informatics and Public Health 128

7.3.1 The Use of DL for Cancer Diagnosis 128

7.3.2 DL in Disease Prediction and Treatment 129

7.3.3 Future Applications 133

7.4 Open Issues Concerning DL in Medical Informatics and Public Health 135

7.5 Conclusion 139

References 140

8 An Insight Into Human Pose Estimation and Its Applications 147
Shambhavi Mishra, Janamejaya Channegowda and Kasina Jyothi Swaroop

8.1 Foundations of Human Pose Estimation 147

8.2 Challenges to Human Pose Estimation 149

8.2.1 Motion Blur 150

8.2.2 Indistinct Background 151

8.2.3 Occlusion or Self-Occlusion 151

8.2.4 Lighting Conditions 151

8.3 Analyzing the Dimensions 152

8.3.1 2D Human Pose Estimation 152

8.3.1.1 Single-Person Pose Estimation 153

8.3.1.2 Multi-Person Pose Estimation 153

8.3.2 3D Human Pose Estimation 153

8.4 Standard Datasets for Human Pose Estimation 154

8.4.1 Pascal VOC (Visual Object Classes) Dataset 156

8.4.2 KTH Multi-View Football Dataset I 156

8.4.3 KTH Multi-View Football Dataset II 156

8.4.4 MPII Human Pose Dataset 157

8.4.5 BBC Pose 157

8.4.6 COCO Dataset 157

8.4.7 J-HMDB Dataset 158

8.4.8 Human3.6M Dataset 158

8.4.9 DensePose 158

8.4.10 AMASS Dataset 159

8.5 Deep Learning Revolutionizing Pose Estimation 159

8.5.1 Approaches in 2D Human Pose Estimation 159

8.5.2 Approaches in 3D Human Pose Estimation 163

8.6 Application of Human Pose Estimation in Medical Domains 165

8.7 Conclusion 166

References 167

9 Brain Tumor Analysis Using Deep Learning: Sensor and IoT-Based Approach for Futuristic Healthcare 171
Rohit Rastogi, D.K. Chaturvedi, Sheelu Sagar, Neeti Tandon and Akshit Rajan Rastogi

9.1 Introduction 172

9.1.1 Brain Tumor 172

9.1.2 Big Data Analytics in Health Informatics 172

9.1.3 Machine Learning in Healthcare 173

9.1.4 Sensors for Internet of Things 173

9.1.5 Challenges and Critical Issues of IoT in Healthcare 174

9.1.6 Machine Learning and Artificial Intelligence for Health Informatics 174

9.1.7 Health Sensor Data Management 175

9.1.8 Multimodal Data Fusion for Healthcare 175

9.1.9 Heterogeneous Data Fusion and Context-Aware Systems a Context-Aware Data Fusion Approach for Health-IoT 176

9.1.10 Role of Technology in Addressing the Problem of Integration of Healthcare System 176

9.2 Literature Survey 177

9.3 System Design and Methodology 179

9.3.1 System Design 179

9.3.2 CNN Architecture 180

9.3.3 Block Diagram 181

9.3.4 Algorithm(s) 181

9.3.5 Our Experimental Results, Interpretation, and Discussion 183

9.3.6 Implementation Details 183

9.3.7 Snapshots of Interfaces 184

9.3.8 Performance Evaluation 186

9.3.9 Comparison with Other Algorithms 186

9.4 Novelty in Our Work 186

9.5 Future Scope, Possible Applications, and Limitations 188

9.6 Recommendations and Consideration 188

9.7 Conclusions 188

References 189

10 Study of Emission From Medicinal Woods to Curb Threats of Pollution and Diseases: Global Healthcare Paradigm Shift in 21st Century 191
Rohit Rastogi, Mamta Saxena, Devendra Kr. Chaturvedi, Sheelu Sagar, Neha Gupta, Harshit Gupta, Akshit Rajan Rastogi, Divya Sharma, Manu Bhardwaj and Pranav Sharma

10.1 Introduction 192

10.1.1 Scenario of Pollution and Need to Connect with Indian Culture 192

10.1.2 Global Pollution Scenario 192

10.1.3 Indian Crisis on Pollution and Worrying Stats 193

10.1.4 Efforts Made to Curb Pollution World Wide 194

10.1.5 Indian Ancient Vedic Sciences to Curb Pollution and Related Disease 196

10.1.6 The Yajna Science: A Boon to Human Race From Rishi-Muni 196

10.1.7 The Science of Mantra Associated With Yajna and Its Scientific Effects 197

10.1.8 Effect of Different Woods and Cow Dung Used in Yajna 197

10.1.9 Use of Sensors and IoT to Record Experimental Data 198

10.1.10 Analysis and Pattern Recognition by ML and AI 199

10.2 Literature Survey 200

10.3 The Methodology and Protocols Followed 201

10.4 Experimental Setup of an Experiment 202

10.5 Results and Discussions 202

10.5.1 Mango 202

10.5.2 Bargad 203

10.6 Applications of Yagya and Mantra Therapy in Pollution Control and Its Significance 207

10.7 Future Research Perspectives 207

10.8 Novelty of Our Research 208

10.9 Recommendations 208

10.10 Conclusions 209

References 209

11 An Economical Machine Learning Approach for Anomaly Detection in IoT Environment 215
Ambika N.

11.1 Introduction 215

11.2 Literature Survey 218

11.3 Proposed Work 229

11.4 Analysis of the Work 230

11.5 Conclusion 231

References 231

12 Indian Science of Yajna and Mantra to Cure Different Diseases: An Analysis Amidst Pandemic With a Simulated Approach 235
Rohit Rastogi, Mamta Saxena, Devendra Kumar Chaturvedi, Mayank Gupta, Puru Jain, Rishabh Jain, Mohit Jain, Vishal Sharma, Utkarsh Sangam, Parul Singhal and Priyanshi Garg

12.1 Introduction 236

12.1.1 Different Types of Diseases 236

12.1.1.1 Diabetes (Madhumeha) and Its Types 236

12.1.1.2 TTH and Stress 237

12.1.1.3 Anxiety 237

12.1.1.4 Hypertension 237

12.1.2 Machine Vision 237

12.1.2.1 Medical Images and Analysis 238

12.1.2.2 Machine Learning in Healthcare 238

12.1.2.3 Artificial Intelligence in Healthcare 239

12.1.3 Big Data and Internet of Things (IoT) 239

12.1.4 Machine Learning in Association with Data Science and Analytics 239

12.1.5 Yajna Science 240

12.1.6 Mantra Science 240

12.1.6.1 Positive Impact of Recital of Gayatri Mantra and OM Chanting 241

12.1.6.2 Significance of Mantra on Indian Culture and Mythology 241

12.1.7 Usefulness and Positive Aspect of Yoga Asanas and Pranayama 241

12.1.8 Effects of Yajna and Mantra on Human Health 242

12.1.9 Impact of Yajna in Reducing the Atmospheric Solution 242

12.1.10 Scientific Study on Impact of Yajna on Air Purification 243

12.1.11 Scientific Meaning of Religious and Manglik Signs 244

12.2 Literature Survey 244

12.3 Methodology 246

12.4 Results and Discussion 249

12.5 Interpretations and Analysis 250

12.6 Novelty in Our Work 258

12.7 Recommendations 259

12.8 Future Scope and Possible Applications 260

12.9 Limitations 261

12.10 Conclusions 261

12.11 Acknowledgments 262

References 262

13 Collection and Analysis of Big Data From Emerging Technologies in Healthcare 269
Nagashri K., Jayalakshmi D. S. and Geetha J.

13.1 Introduction 269

13.2 Data Collection 271

13.2.1 Emerging Technologies in Healthcare and Its Applications 271

13.2.1.1 RFID 272

13.2.1.2 WSN 273

13.2.1.3 IoT 274

13.2.2 Issues and Challenges in Data Collection 277

13.2.2.1 Data Quality 277

13.2.2.2 Data Quantity 277

13.2.2.3 Data Access 278

13.2.2.4 Data Provenance 278

13.2.2.5 Security 278

13.2.2.6 Other Challenges 279

13.3 Data Analysis 280

13.3.1 Data Analysis Approaches 280

13.3.1.1 Machine Learning 280

13.3.1.2 Deep Learning 281

13.3.1.3 Natural Language Processing 281

13.3.1.4 High-Performance Computing 281

13.3.1.5 Edge-Fog Computing 282

13.3.1.6 Real-Time Analytics 282

13.3.1.7 End-User Driven Analytics 282

13.3.1.8 Knowledge-Based Analytics 283

13.3.2 Issues and Challenges in Data Analysis 283

13.3.2.1 Multi-Modal Data 283

13.3.2.2 Complex Domain Knowledge 283

13.3.2.3 Highly Competent End-Users 283

13.3.2.4 Supporting Complex Decisions 283

13.3.2.5 Privacy 284

13.3.2.6 Other Challenges 284

13.4 Research Trends 284

13.5 Conclusion 286

References 286

14 A Complete Overview of Sign Language Recognition and Translation Systems 289
Kasina Jyothi Swaroop, Janamejaya Channegowda and Shambhavi Mishra

14.1 Introduction 289

14.2 Sign Language Recognition 290

14.2.1 Fundamentals of Sign Language Recognition 290

14.2.2 Requirements for the Sign Language Recognition 292

14.3 Dataset Creation 293

14.3.1 American Sign Language 293

14.3.2 German Sign Language 296

14.3.3 Arabic Sign Language 297

14.3.4 Indian Sign Language 298

14.4 Hardware Employed for Sign Language Recognition 299

14.4.1 Glove/Sensor-Based Systems 299

14.4.2 Microsoft Kinect–Based Systems 300

14.5 Computer Vision–Based Sign Language Recognition and Translation Systems 302

14.5.1 Image Processing Techniques for Sign Language Recognition 302

14.5.2 Deep Learning Methods for Sign Language Recognition 304

14.5.3 Pose Estimation Application to Sign Language Recognition 305

14.5.4 Temporal Information in Sign Language Recognition and Translation 306

14.6 Sign Language Translation System—A Brief Overview 307

14.7 Conclusion 309

References 310

Index 315

BIOINFORMATICS AND MEDICAL APPLICATIONS The main topics addressed in this book are big data analytics problems in bioinformatics research such as microarray data analysis, sequence analysis, genomics-based analytics, disease network analysis, techniques for big data analytics, and health information technology. Bioinformatics and Medical Applications: Big Data Using Deep Learning Algorithms analyses massive biological datasets using computational approaches and the latest cutting-edge technologies to capture and interpret biological data. The book delivers various bioinformatics computational methods used to identify diseases at an early stage by assembling cutting-edge resources into a single collection designed to enlighten the reader on topics focusing on computer science, mathematics, and biology. In modern biology and medicine, bioinformatics is critical for data management. This book explains the bioinformatician's important tools and examines how they are used to evaluate biological data and advance disease knowledge. The editors have curated a distinguished group of perceptive and concise chapters that presents the current state of medical treatments and systems and offers emerging solutions for a more personalized approach to healthcare. Applying deep learning techniques for data-driven solutions in health information allows automated analysis whose method can be more advantageous in supporting the problems arising from medical and health-related information. Audience The primary audience for the book includes specialists, researchers, postgraduates, designers, experts, and engineers, who are occupied with biometric research and security-related issues.

About the Author

A. Suresh, PhD is an associate professor, Department of the Networking and Communications, SRM Institute of Science & Technology, Kattankulathur, Tamil Nadu, India. He has nearly two decades of experience in teaching and his areas of specialization are data mining, artificial intelligence, image processing, multimedia, and system software. He has published 6 patents and more than 100 papers in international journals.

S. Vimal, PhD is an assistant professor in the Department of Artificial Intelligence & DS, Ramco Institute of Technology, Tamilnadu, India. He is the editor of 3 books and guest-edited multiple journal special issues. He has more than 15 years of teaching experience.

Y. Harold Robinson, PhD is currently working in the School of Technology and Engineering, Vellore Institute of Technology, Vellore, India. He has published more than 50 papers in various international journals and presented more than 70 papers in both national and international conferences.

Dhinesh Kumar Ramaswami, BE in Computer Science, is a Senior Consultant at Capgemini America Inc. He has over 9 years of experience in software development and specializes in various .net technologies. He has published more than 15 papers in international journals and national and international conferences.

R. Udendhran, PhD is an assistant professor, Department of Computer Science and Engineering at Sri Sairam Institute of Technology, Chennai, Tamil Nadu, India. He has published about 20 papers in international journals.

There are no comments for this item.

to post a comment.