Electromechanics and MEMS / Thomas B. Jones, University of Rochester, New York, Nenad G. Nenadic, Rochester Institute of Technology.

By: Jones, T. B. (Thomas Byron), 1944-
Contributor(s): Nenadic, Nenad G
Language: English Publisher: Cambridge ; New York : Cambridge University Press, 2013Description: 1 online resource (xx, 559 pages) : illustrationsContent type: text Media type: unmediated Carrier type: volumeISBN: 9781139032605Subject(s): Microelectromechanical systems | Genre/Form: Electronic books.DDC classification: 621.381 LOC classification: TK7875 | .J66 2013Other classification: TEC008080 Online resources: Full text available from Cambridge University Press Click here to view
Contents:
Machine generated contents note: 1. Introduction; 2. Circuit-based modeling; 3. Capacitive lumped parameter electromechanics; 4. Small-signal capacitive electromechanical systems; 5. Electromechanics of piezoelectric elements; 6. Capacitive sensing and resonant drive circuits; 7. Distributed 1D and 2D electromechanical structures; 8. Practical MEMS: pressure transducers, accelerometers and gyroscopes; 9. Electromechanics of magnetic MEMS devices; A. Review of quasistatic electromagnetics; B. Review of mechanical resonators; C. Brief survey of MEMS fabrication; D. A brief review of solid mechanics; E. Tables of M- and N-form transducer matrics; F. Finite element analysis as applied to MEMS.
Summary: "Offering a consistent, systematic approach to capacitive, piezoelectric and magnetic MEMS, from basic electromechanical transducers to high-level models for sensors and actuators, this comprehensive textbook equips graduate and senior-level undergraduate students with all the resources necessary to design and develop practical, system-level MEMS models. The concise yet thorough treatment of the underlying principles of electromechanical transduction provides a solid theoretical framework for this development, with each new topic related back to the core concepts. Repeated references to the shared commonalities of all MEMS encourage students to develop a systems-based design perspective. Extensive use is made of easy-to-interpret electrical and mechanical analogs, such as electrical circuits, electromechanical two-port models and the cascade paradigm. Each chapter features worked examples and numerous problems, all designed to test and extend students' understanding of the key principles"-- Provided by publisher.
Tags from this library: No tags from this library for this title. Log in to add tags.
    Average rating: 0.0 (0 votes)
Item type Current location Home library Call number Status Date due Barcode Item holds
EBOOK EBOOK COLLEGE LIBRARY
COLLEGE LIBRARY
621.381 (Browse shelf) Available CL-46068
Total holds: 0

Includes bibliographical references and index.

Machine generated contents note: 1. Introduction; 2. Circuit-based modeling; 3. Capacitive lumped parameter electromechanics; 4. Small-signal capacitive electromechanical systems; 5. Electromechanics of piezoelectric elements; 6. Capacitive sensing and resonant drive circuits; 7. Distributed 1D and 2D electromechanical structures; 8. Practical MEMS: pressure transducers, accelerometers and gyroscopes; 9. Electromechanics of magnetic MEMS devices; A. Review of quasistatic electromagnetics; B. Review of mechanical resonators; C. Brief survey of MEMS fabrication; D. A brief review of solid mechanics; E. Tables of M- and N-form transducer matrics; F. Finite element analysis as applied to MEMS.

"Offering a consistent, systematic approach to capacitive, piezoelectric and magnetic MEMS, from basic electromechanical transducers to high-level models for sensors and actuators, this comprehensive textbook equips graduate and senior-level undergraduate students with all the resources necessary to design and develop practical, system-level MEMS models. The concise yet thorough treatment of the underlying principles of electromechanical transduction provides a solid theoretical framework for this development, with each new topic related back to the core concepts. Repeated references to the shared commonalities of all MEMS encourage students to develop a systems-based design perspective. Extensive use is made of easy-to-interpret electrical and mechanical analogs, such as electrical circuits, electromechanical two-port models and the cascade paradigm. Each chapter features worked examples and numerous problems, all designed to test and extend students' understanding of the key principles"-- Provided by publisher.

There are no comments for this item.

to post a comment.

Click on an image to view it in the image viewer