Making sense of data I : a practical guide to exploratory data analysis and data mining / Glenn J. Myatt, Wayne P. Johnson.

By: Myatt, Glenn J, 1969- [author.]
Contributor(s): Johnson, Wayne P
Language: English Publisher: Hoboken, New Jersey : John Wiley & Sons, Inc., [2014]Edition: Second editionDescription: 1 online resource (248 pages)Content type: text Media type: computer Carrier type: online resourceISBN: 9781118422014 (pdf); 9781118422106 (epub)Uniform titles: Making sense of data Subject(s): Data mining | Mathematical statisticsGenre/Form: Electronic books.DDC classification: 006.312 LOC classification: QA276Online resources: Full text is available at Wiley Online Library Click here to view
Contents:
PREFACE ix 1 INTRODUCTION 1 1.1 Overview 1 1.2 Sources of Data 2 1.3 Process for Making Sense of Data 3 1.4 Overview of Book 13 1.5 Summary 16 Further Reading 16 2 DESCRIBING DATA 17 2.1 Overview 17 2.2 Observations and Variables 18 2.3 Types of Variables 20 2.4 Central Tendency 22 2.5 Distribution of the Data 24 2.6 Confidence Intervals 36 2.7 Hypothesis Tests 40 Exercises 42 Further Reading 45 3 PREPARING DATA TABLES 47 3.1 Overview 47 3.2 Cleaning the Data 48 3.3 Removing Observations and Variables 49 3.4 Generating Consistent Scales Across Variables 49 3.5 New Frequency Distribution 51 3.6 Converting Text to Numbers 52 3.7 Converting Continuous Data to Categories 53 3.8 Combining Variables 54 3.9 Generating Groups 54 3.10 Preparing Unstructured Data 55 Exercises 57 Further Reading 57 4 UNDERSTANDING RELATIONSHIPS 59 4.1 Overview 59 4.2 Visualizing Relationships Between Variables 60 4.3 Calculating Metrics About Relationships 69 Exercises 81 Further Reading 82 5 IDENTIFYING AND UNDERSTANDING GROUPS 83 5.1 Overview 83 5.2 Clustering 88 5.3 Association Rules 111 5.4 Learning Decision Trees from Data 122 Exercises 137 Further Reading 140 6 BUILDING MODELS FROM DATA 141 6.1 Overview 141 6.2 Linear Regression 149 6.3 Logistic Regression 161 6.4 k-Nearest Neighbors 167 6.5 Classification and Regression Trees 172 6.6 Other Approaches 178 Exercises 179 Further Reading 182 APPENDIX A ANSWERS TO EXERCISES 185 APPENDIX B HANDS-ON TUTORIALS 191 B.1 Tutorial Overview 191 B.2 Access and Installation 191 B.3 Software Overview 192 B.4 Reading in Data 193 B.5 Preparation Tools 195 B.6 Tables and Graph Tools 199 B.7 Statistics Tools 202 B.8 Grouping Tools 204 B.9 Models Tools 207 B.10 Apply Model 211 B.11 Exercises 211 BIBLIOGRAPHY 227 INDEX 231
Summary: Praise for the First Edition “...a well-written book on data analysis and data mining that provides an excellent foundation...” —CHOICE “This is a must-read book for learning practical statistics and data analysis...” —Computing Reviews.com A proven go-to guide for data analysis, Making Sense of Data I: A Practical Guide to Exploratory Data Analysis and Data Mining, Second Edition focuses on basic data analysis approaches that are necessary to make timely and accurate decisions in a diverse range of projects. Based on the authors’ practical experience in implementing data analysis and data mining, the new edition provides clear explanations that guide readers from almost every field of study. In order to facilitate the needed steps when handling a data analysis or data mining project, a step-by-step approach aids professionals in carefully analyzing data and implementing results, leading to the development of smarter business decisions. The tools to summarize and interpret data in order to master data analysis are integrated throughout, and the Second Edition also features: Updated exercises for both manual and computer-aided implementation with accompanying worked examples New appendices with coverage on the freely available Traceis™ software, including tutorials using data from a variety of disciplines such as the social sciences, engineering, and finance New topical coverage on multiple linear regression and logistic regression to provide a range of widely used and transparent approaches Additional real-world examples of data preparation to establish a practical background for making decisions from data Making Sense of Data I: A Practical Guide to Exploratory Data Analysis and Data Mining, Second Edition is an excellent reference for researchers and professionals who need to achieve effective decision making from data. The Second Edition is also an ideal textbook for undergraduate and graduate-level courses in data analysis and data mining and is appropriate for cross-disciplinary courses found within computer science and engineering departments.
Tags from this library: No tags from this library for this title. Log in to add tags.
    Average rating: 0.0 (0 votes)
Item type Current location Home library Call number Status Date due Barcode Item holds
EBOOK EBOOK COLLEGE LIBRARY
COLLEGE LIBRARY
LIC Gateway
006.312 M9909 2014 (Browse shelf) Available CL-50314
Total holds: 0

ABOUT THE AUTHOR
Glenn J. Myatt, PhD, is Chief Scientific Officer and Cofounder of Leadscope, Inc. The author of numerous journal articles, Dr. Myatt, is also the coauthor of Making Sense of Data II: A Practical Guide to Data Visualization, Advanced Data Mining Methods, and Applications and Making Sense of Data III: A Practical Guide to Designing Interactive Data Visualizations, both of which are published by Wiley.

Wayne P. Johnson, MSc, is Cofounder of Leadscope, Inc., as well as a partner of Myatt & Johnson, Inc. He has over 35 years of experience in software engineering related to operating systems, telecommunications, and artificial intelligence at various companies including IBM, AT&T Bell Laboratories, and Ford Motor Company. He has led research projects related to informatics, and in addition to authoring numerous journal articles, Mr. Johnson is the coauthor of Making Sense of Data II: A Practical Guide to Data Visualization, Advanced Data Mining Methods, and Applications and Making Sense of Data III: A Practical Guide to Designing Interactive Data Visualizations, both of which are published by Wiley.

Includes bibliographical references and index.

PREFACE ix

1 INTRODUCTION 1

1.1 Overview 1

1.2 Sources of Data 2

1.3 Process for Making Sense of Data 3

1.4 Overview of Book 13

1.5 Summary 16

Further Reading 16

2 DESCRIBING DATA 17

2.1 Overview 17

2.2 Observations and Variables 18

2.3 Types of Variables 20

2.4 Central Tendency 22

2.5 Distribution of the Data 24

2.6 Confidence Intervals 36

2.7 Hypothesis Tests 40

Exercises 42

Further Reading 45

3 PREPARING DATA TABLES 47

3.1 Overview 47

3.2 Cleaning the Data 48

3.3 Removing Observations and Variables 49

3.4 Generating Consistent Scales Across Variables 49

3.5 New Frequency Distribution 51

3.6 Converting Text to Numbers 52

3.7 Converting Continuous Data to Categories 53

3.8 Combining Variables 54

3.9 Generating Groups 54

3.10 Preparing Unstructured Data 55

Exercises 57

Further Reading 57

4 UNDERSTANDING RELATIONSHIPS 59

4.1 Overview 59

4.2 Visualizing Relationships Between Variables 60

4.3 Calculating Metrics About Relationships 69

Exercises 81

Further Reading 82

5 IDENTIFYING AND UNDERSTANDING GROUPS 83

5.1 Overview 83

5.2 Clustering 88

5.3 Association Rules 111

5.4 Learning Decision Trees from Data 122

Exercises 137

Further Reading 140

6 BUILDING MODELS FROM DATA 141

6.1 Overview 141

6.2 Linear Regression 149

6.3 Logistic Regression 161

6.4 k-Nearest Neighbors 167

6.5 Classification and Regression Trees 172

6.6 Other Approaches 178

Exercises 179

Further Reading 182

APPENDIX A ANSWERS TO EXERCISES 185

APPENDIX B HANDS-ON TUTORIALS 191

B.1 Tutorial Overview 191

B.2 Access and Installation 191

B.3 Software Overview 192

B.4 Reading in Data 193

B.5 Preparation Tools 195

B.6 Tables and Graph Tools 199

B.7 Statistics Tools 202

B.8 Grouping Tools 204

B.9 Models Tools 207

B.10 Apply Model 211

B.11 Exercises 211

BIBLIOGRAPHY 227

INDEX 231

Praise for the First Edition

“...a well-written book on data analysis and data mining that provides an excellent foundation...”

—CHOICE

“This is a must-read book for learning practical statistics and data analysis...”

—Computing Reviews.com



A proven go-to guide for data analysis, Making Sense of Data I: A Practical Guide to Exploratory Data Analysis and Data Mining, Second Edition focuses on basic data analysis approaches that are necessary to make timely and accurate decisions in a diverse range of projects. Based on the authors’ practical experience in implementing data analysis and data mining, the new edition provides clear explanations that guide readers from almost every field of study.

In order to facilitate the needed steps when handling a data analysis or data mining project, a step-by-step approach aids professionals in carefully analyzing data and implementing results, leading to the development of smarter business decisions. The tools to summarize and interpret data in order to master data analysis are integrated throughout, and the Second Edition also features:

Updated exercises for both manual and computer-aided implementation with accompanying worked examples
New appendices with coverage on the freely available Traceis™ software, including tutorials using data from a variety of disciplines such as the social sciences, engineering, and finance
New topical coverage on multiple linear regression and logistic regression to provide a range of widely used and transparent approaches
Additional real-world examples of data preparation to establish a practical background for making decisions from data

Making Sense of Data I: A Practical Guide to Exploratory Data Analysis and Data Mining, Second Edition is an excellent reference for researchers and professionals who need to achieve effective decision making from data. The Second Edition is also an ideal textbook for undergraduate and graduate-level courses in data analysis and data mining and is appropriate for cross-disciplinary courses found within computer science and engineering departments.

000-099 006

Description based on print version record and CIP data provided by publisher.

There are no comments for this item.

to post a comment.