Fundamental spacecraft dynamics and control / Weiduo Hu.
By: Hu, Weiduo [author.]
Language: English Publisher: Singapore : John Wiley & Sons Inc., [2015]Description: 1 online resource (300 pages)Content type: text Media type: computer Carrier type: online resourceISBN: 9781118753538; 9781118754351 (ePub); 9781118754290 (Adobe PDF)Subject(s): Space vehicles -- Dynamics | Space vehicles -- Control systemsGenre/Form: Electronic books.DDC classification: 629.41 LOC classification: TL1050Online resources: Full text is available at Wiley Online Library Click here to viewItem type | Current location | Home library | Call number | Status | Date due | Barcode | Item holds |
---|---|---|---|---|---|---|---|
![]() |
COLLEGE LIBRARY | COLLEGE LIBRARY | 629.41 H8601 2015 (Browse shelf) | Available | CL-50448 |
ABOUT THE AUTHOR
WEIDUO HU, Beihang University, P. R. China
Includes bibliographical references and index.
Preface xi
Acknowledgments xiii
About the Author xv
Part I Orbital Mechanics
1 Introduction 3
1.1 History 3
1.1.1 Kepler’s Laws 3
1.1.2 Newton’s Laws 4
1.1.3 Space Missions 5
1.2 Coordinate Systems 6
1.2.1 Earth Reference Frame 6
1.2.2 Sun-centered Frame 8
1.2.3 Right Ascension-Declination System 8
1.2.4 Perifocal Coordinate System 9
1.2.5 Satellite Coordinate System 9
1.2.6 Topo-centric-horizon Coordinate System 9
1.3 Time System 10
1.3.1 Clocks 10
1.3.2 Time 11
1.3.3 Reference Motions 14
1.4 References and Further Reading 16
1.5 Summary and Keywords 16
Problems 17
References 17
2 Keplerian Motion 19
2.1 N-body System 19
2.2 The Two-body Problem 21
2.2.1 Geometry for Two Bodies in an Inertial Reference Frame 21
2.2.2 Relative Motion of Two Bodies 21
2.2.3 Constants of the Motion 23
2.2.4 Orbital Path 27
2.3 Orbital Elements 36
2.3.1 Kepler’s COEs 36
2.3.2 Alternate Orbital Element Quantities 38
2.3.3 A Calculation Example 38
2.4 Coordinate Transformations 40
2.4.1 Rotation 41
2.4.2 From P̂Q̂Ŵ to ÎĴK̂ 41
2.4.3 From ÎĴK̂ to ŜÊẐ 43
2.4.4 Single Radar Observation 45
2.4.5 Summary of the Transformation 48
2.4.6 Three Position Vectors (Gibbs Method) 50
2.5 Time of Flight (TOF) 51
2.5.1 Kepler’s Equation (Elliptical Orbits) 51
2.5.2 Numerical Solution 53
2.5.3 Universal Variable X 56
2.5.4 f and g Expansion 60
2.6 Summary and Keywords 62
Problems 63
References 67
3 Orbit Maneuver 69
3.1 Basic Orbital Transfer 69
3.1.1 In-plane (Coplanar) Changes 69
3.1.2 Out-of-plane (Non-coplanar) Changes 71
3.1.3 The Phase Angle 72
3.2 Ballistic Missiles 73
3.2.1 Ballistic Missile Trajectory 74
3.2.2 Effect of the Earth’s Rotation 77
3.3 Lunar Missions 80
3.3.1 Possibility of Transfer 80
3.3.2 More Practical Scenario 83
3.4 Interplanetary Travel 87
3.4.1 Sphere of Influence (SOI) 88
3.4.2 Scenario 89
3.4.3 Gravity Assist 93
3.5 Launch Issues, Starting the Mission 96
3.5.1 Launch Time 96
3.5.2 When and Where to Launch 97
3.5.3 Launch Velocity 98
3.5.4 Rockets and Launch Vehicles 100
3.5.5 Reentry 101
3.6 Summary and Keywords 102
Problems 102
References 106
4 Special Topics 107
4.1 Relative Motion – CW Equation 107
4.1.1 Equations of Motion 107
4.1.2 Examples 110
4.1.3 J2 Perturbed No-circular Target Orbit 112
4.2 Lambert Problem 113
4.2.1 Lambert’s Theorem 114
4.2.2 Culp’s Proof of Lambert’s Theorem 117
4.2.3 f , g Function Algorithm 119
4.2.4 Examples 120
4.2.5 Comparison of CW and Nonlinear Lambert Analysis 122
4.3 Orbit Determination 123
4.4 Optimal Control 127
4.5 Three-Body Problem – CRTBP 132
4.5.1 Equations of Motion 134
4.5.2 Lagrange Points 135
4.5.3 Examples of CRTBP 137
4.6 Summary and Keywords 139
Problems 141
References 145
5 Perturbed Orbital Motions 147
5.1 Special Perturbation 147
5.1.1 General Concept of Perturbation 147
5.1.2 Cowell’s Method 148
5.1.3 Encke’s Method 148
5.1.4 Variation of Parameters (COEs) 149
5.2 Systematic Method to Derive VOP 151
5.2.1 Variation of Orbital Elements 151
5.2.2 Variation of r and 𝑣 156
5.3 General Perturbations (GA) 157
5.3.1 An Example of GP 158
5.3.2 General Perturbation Techniques 158
5.3.3 Total Perturbation 161
5.3.4 Analytical Perturbation Formulation 162
5.3.5 Gravity Potential 165
5.4 Numerical Methods 168
5.5 Summary and Keywords 169
Problems 169
References 171
6 Orbital Motion Around Asteroids 173
6.1 Introduction 173
6.2 Problem Formulation 174
6.3 Motion Equations 177
6.4 Progress and Some Conclusions 178
6.4.1 Secular Motion 178
6.4.2 Resonance 180
6.4.3 Periodic Orbits 180
6.5 Conclusions 182
6.6 Summary and Keywords 182
Acknowledgments 183
Problems 183
References 183
7 Application 185
7.1 Two Line Elements (TLE) 185
7.2 GPS RINEX 187
7.2.1 Distribution of Ephemerides 187
7.2.2 A GPS RINEX Navigation File 188
7.3 Remote Observation 188
7.3.1 Orbital Coverage 188
7.3.2 Ground Track 189
7.3.3 Ground Station 193
7.4 Summary and Keywords 196
Problems 198
References 198
Part II Attitude Dynamics
8 Rigid Body Kinematics 201
8.1 Attitude Notions 201
8.1.1 Attitude 201
8.1.2 Frames 202
8.1.3 Vector 204
8.2 Attitude Parameters 205
8.2.1 Direct Cosine Matrix 205
8.2.2 Euler Angles 207
8.3 Differential Equations of Kinematics 210
8.3.1 Typical Problem Involving Angular Velocity and Attitude 213
8.4 Euler’s Theorem 214
8.4.1 Another Four-Parameter Set 215
8.4.2 Summary and Extension of Kinematics Notation 216
8.5 Attitude Determination 219
8.5.1 Sensors 219
8.5.2 Attitude Determination 222
8.6 Summary and Keywords 228
Problems 228
References 230
9 Attitude Dynamics 231
9.1 Rigid Body Models 231
9.1.1 Particle Model 232
9.1.2 Continuous Model 232
9.1.3 Angular Momentum 236
9.2 Inertia Tensor 238
9.2.1 Calculation of Inertia Tensor (𝐈) 238
9.2.2 Parallel Axis Theorem (PAT) 240
9.2.3 Change of Vector Basis Theorem 242
9.2.4 Inertia with a Rotating Panel 244
9.3 Equation of S/C Motion 245
9.3.1 Angular Momentum Principle 245
9.3.2 Rotational Equation of Motion 246
9.3.3 Coupled Equations of Motion 247
9.4 Euler’s Equation 247
9.4.1 Axisymmetric, Torque-Free Rigid Body 248
9.4.2 Axisymmetric, Torque-Free Rigid Body Summary 252
9.4.3 Asymmetric, Torque-Free Rigid Body 253
9.5 Summary and Keywords 255
Problems 255
References 255
10 Attitude Stabilization and Control 257
10.1 Free Body Motion Stability 257
10.2 Dual-Spin Stabilization 259
10.3 Gravity Gradient Stabilization 260
10.4 Three-axis Stabilization 263
10.5 Complete Dynamical Modeling of Spacecraft 266
10.5.1 Flexible Panels Example 267
10.5.2 Liquid Sloshing Example 268
10.5.3 A Mass Spring S/C Example 268
10.6 Summary and Keywords 269
Problems 269
References 271
Appendix A Math Review 273
A.1 Power, Taylor Series 273
A.2 Differential Correction 276
Algorithm Process 277
A.3 Spherical Trigonometry 278
A.4 Summary and Keywords 281
References 281
Index 283
An extensive text reference includes around an asteroid – a new and important topic
Covers the most updated contents in spacecraft dynamics and control, both in theory and application
Introduces the application to motion around asteroids – a new and important topic
Written by a very experienced researcher in this area
600-699 629
Description based on print version record and CIP data provided by publisher.
There are no comments for this item.