CMOS integrated lab-on-a-chip system for personalized biomedical diagnosis / Hao Yu, Southern University of Science and Technology, China, Mei Yan, Consultant, China, Xiwei Huang, Hangzhou Dianzi University, China.

By: Yu, Hao, 1976- [author.]
Language: English Series: Wiley - IEEEPublisher: Hoboken, NJ : Wiley / IEEE Press, 2018Description: 1 online resource (288 pages)Content type: text Media type: computer Carrier type: online resourceISBN: 9781119218357 (pdf); 9781119218340 (epub)Subject(s): Medical instruments and apparatus -- Research | Metal oxide semiconductors, ComplementaryGenre/Form: Electronic books.DDC classification: 610.284 LOC classification: RA856.4Online resources: Full text available at Wiley Online Library Click here to view
Contents:
Preface x 1 Introduction 1 1.1 Personalized Biomedical Diagnosis 1 1.1.1 Personalized Diagnosis 1 1.1.2 Conventional Biomedical Diagnostic Instruments 3 1.1.2.1 Optical Microscope 3 1.1.2.2 Flow Cytometer 4 1.1.2.3 DNA Sequencer 5 1.2 CMOS Sensor-based Lab-on-a-Chip for System Miniaturization 7 1.2.1 CMOS Sensor-based Lab-on-a-Chip 7 1.2.2 CMOS Sensor 8 1.2.2.1 CMOS Process Fundamentals 8 1.2.2.2 CMOS Sensor Technology 10 1.2.2.3 Multimodal CMOS Sensor 13 1.2.3 Microfluidics 14 1.2.3.1 Microfluidic Fundamentals 14 1.2.3.2 Microfluidics Fabrication 16 1.3 Objectives and Organization of this Book 20 1.3.1 Objectives 20 1.3.2 Organization 20 References 21 2 CMOS Sensor Design 25 2.1 Top Architecture 25 2.2 Noise Overview 25 2.2.1 Thermal Noise 26 2.2.2 Flicker Noise 27 2.2.3 Shot Noise 28 2.2.4 MOSFET Noise Model 29 2.3 Pixel Readout Circuit 29 2.3.1 Source Follower 30 2.3.2 Sub-threshold Gm Integrator 33 2.3.3 CTIA 35 2.4 Column Amplifier 38 2.5 Column ADC 39 2.5.1 Single-Slope ADC 39 2.5.2 Sigma-Delta ADC 43 2.6 Correlated Sampling 49 2.6.1 Correlated Double Sampling 49 2.6.2 Correlated Multiple Sampling 51 2.7 Timing Control 52 2.7.1 Row Timing Control 52 2.7.2 Column Timing Control 55 2.8 LVDS Interface 57 References 59 3 CMOS Impedance Sensor 60 3.1 Introduction 60 3.2 CMOS Impedance Pixel 61 3.3 Readout Circuit 63 3.4 A 96 × 96 Electronic Impedance Sensing System 65 3.4.1 Top Architecture 65 3.4.2 System Implementation 67 3.4.2.1 System Setup 67 3.4.2.2 Sample Preparation 68 3.4.3 Results 68 3.4.3.1 Data Fitting for Single Cell Impedance Measurement 69 3.4.3.2 Cell and Electrode Impedance Analysis 71 3.4.3.3 EIS for Single-Cell Impedance Enumeration 71 References 74 4 CMOS Terahertz Sensor 76 4.1 Introduction 76 4.2 CMOS THz Pixel 76 4.2.1 Differential TL-SRR Resonator Design 76 4.2.1.1 Stacked SRR Layout 76 4.2.1.2 Comparison with Single-ended TL-SRR Resonator 80 4.2.1.3 Comparison with Standing-Wave Resonator 82 4.2.2 Differential TL-CSRR Resonator Design 83 4.3 Readout Circuit 84 4.3.1 Super-regenerative Amplification 84 4.3.1.1 Equivalent Circuit of SRA 84 4.3.1.2 Frequency Response of SRA 86 4.3.1.3 Sensitivity of SRA 86 4.3.2 Super-regenerative Receivers 87 4.3.2.1 Quench-controlled Oscillation 87 4.3.2.2 SRX Design by TL-CSRR 89 4.3.2.3 SRX Design by TL-SRR 91 4.4 A 135 GHz Imager 94 4.4.1 135 GHz DTL-SRR-based Receiver 94 4.4.2 System Implementation 95 4.4.3 Results 95 4.5 Plasmonic Sensor for Circulating Tumor Cell Detection 98 4.5.1 Introduction of CTC Detection 98 4.5.2 SRR-based Oscillator for CTC Detection 99 4.5.3 Sensitivity of SRR-based Oscillator 101 References 103 5 CMOS Ultrasound Sensor 106 5.1 Introduction 106 5.2 CMUT Pixel 107 5.3 Readout Circuit 109 5.4 A 320 × 320 CMUT-based Ultrasound Imaging System 110 5.4.1 Top Architecture 110 5.4.2 System Implementation 111 5.4.2.1 Process Selection 111 5.4.2.2 High Voltage Pulser 112 5.4.2.3 Low-Noise Preamplifier and High Voltage Switch 115 5.4.3 Results 116 5.4.3.1 Simulation Results 116 5.4.3.2 Two-channel AFE IC Measurement Results 117 5.4.3.3 Acoustic Transmission Testing with AFE IC and CMUT 121 5.4.3.4 Acoustic Pulse-echo Testing with AFE IC and CMUT 122 References 124 6 CMOS 3-D-Integrated MEMS Sensor 126 6.1 Introduction 126 6.2 MEMS Sensor 127 6.3 Readout Circuit 127 6.4 A 3-D TSV-less Accelerometer 129 6.4.1 CMOS-on-MEMS Stacking 129 6.4.2 Bonding Reliability 132 6.4.2.1 Al–Au Thermo-compression Shear Strength 132 6.4.2.2 Al–Au Thermo-compression Hermeticity 134 6.4.3 Results 135 6.4.3.1 Standalone Validation of the Readout Circuit 135 6.4.3.2 Functionality Testing of CMOS-on-MEMS Chip 136 6.4.3.3 Reliability Testing of CMOS-on-MEMS Chip 138 References 141 7 CMOS Image Sensor 142 7.1 Introduction 142 7.2 CMOS Image Pixel 145 7.2.1 Structure 145 7.2.1.1 FSI 4 T Pixel 145 7.2.1.2 Back Side Illumination Pixel 147 7.2.1.3 Stack Pixel 148 7.2.2 Noise and Model 150 7.2.2.1 Photon Shot Noise 151 7.2.2.2 Reset Noise 152 7.2.2.3 Thermal Noise 152 7.2.2.4 Flicker Noise 154 7.2.2.5 Fixed Pattern Noise 154 7.3 Readout Circuit 155 7.3.1 Global Serial Readout 156 7.3.2 Correlated Double Sampling 156 7.4 A 3.2 Mega CMOS Image Sensor 158 7.4.1 4-way Shared Pixel Unit 158 7.4.2 Top Architecture 159 7.4.3 System Implementation 162 7.4.4 Results 164 7.4.4.1 System Characterization 164 7.4.4.2 Digital CDS for FPN Reduction 164 7.4.4.3 Blood Cell Imaging Experiments 165 References 167 8 CMOS Dual-mode pH-Image Sensor 169 8.1 Introduction 169 8.2 CMOS Dual-mode pH-Image Pixel 170 8.3 Readout Circuit 172 8.3.1 CDS for Optical Sensing 174 8.3.2 CDS for Chemical Sensing 174 8.4 A 64 × 64 Dual-mode pH-Image Sensor 175 8.4.1 Top Architecture 175 8.4.2 System Implementation 177 8.4.3 Results 177 References 184 9 CMOS Dual-mode Energy-harvesting-image Sensor 186 9.1 Introduction 186 9.2 CMOS EHI Pixel 187 9.3 Readout Circuit 191 9.4 A 96 × 96 EHI Sensing System 195 9.4.1 Top Architecture 195 9.4.2 System Implementation 197 9.4.3 Results 203 References 211 10 DNA Sequencing 213 10.1 Introduction 213 10.2 CMOS ISFET-based Sequencing 213 10.2.1 Overview 213 10.2.2 ISFET-based Sequencing Procedure 215 10.3 CMOS THz-based Genotyping 220 10.3.1 Overview 220 10.3.2 THz-based Genotyping Procedure 220 10.4 Beyond CMOS Nanopore Sequencing 221 10.4.1 Overview 221 10.4.2 Nanopore-based Sequencing Procedure 223 10.5 Summary 227 References 230 11 Cell Counting 231 11.1 Introduction 231 11.2 Optofluidic Imaging System 231 11.2.1 Contact Imaging 231 11.2.2 Optofluidic Imaging System Model 232 11.2.2.1 Resolution Model 232 11.2.2.2 Dynamic Range Model 233 11.2.2.3 Implication to SR Processing 234 11.3 Super-resolution Image Processing 234 11.3.1 Multi-frame SR Processing 235 11.3.2 Single-frame SR Processing 236 11.4 Machine-learning-based Single-frame Super-resolution 237 11.4.1 ELMSR 238 11.4.2 CNNSR 242 11.5 Microfluidic Cytometer for Cell Counting 245 11.5.1 Microfluidic Cytometer System 245 11.5.1.1 System Overview 245 11.5.1.2 Microfluidic Channel Fabrication 246 11.5.1.3 Microbead and Cell Sample Preparation 246 11.5.1.4 Microfluidic Cytometer Design 247 11.5.1.5 Cell Detection 248 11.5.1.6 Cell Recognition 249 11.5.1.7 Cell Counting 250 11.5.2 Results 250 11.5.2.1 Counting Performance Characterization 250 11.5.2.2 Off-Line SR Training 251 11.5.2.3 On-line SR Testing 253 11.5.2.4 On-line Cell Recognition and Counting 254 References 255 12 Conclusion 258 12.1 Summaries 258 12.2 Future Works 260 Index 262
Summary: A thorough examination of lab-on-a-chip circuit-level operations to improve system performance A rapidly aging population demands rapid, cost-effective, flexible, personalized diagnostics. Existing systems tend to fall short in one or more capacities, making the development of alternatives a priority. CMOS Integrated Lab-on-a-Chip System for Personalized Biomedical Diagnosis provides insight toward the solution, with a comprehensive, multidisciplinary reference to the next wave of personalized medicine technology. A standard complementary metal oxide semiconductor (CMOS) fabrication technology allows mass-production of large-array, miniaturized CMOS-integrated sensors from multi-modal domains with smart on-chip processing capability. This book provides an in-depth examination of the design and mechanics considerations that make this technology a promising platform for microfluidics, micro-electro-mechanical systems, electronics, and electromagnetics. From CMOS fundamentals to end-user applications, all aspects of CMOS sensors are covered, with frequent diagrams and illustrations that clarify complex structures and processes. Detailed yet concise, and designed to help students and engineers develop smaller, cheaper, smarter lab-on-a-chip systems, this invaluable reference: Provides clarity and insight on the design of lab-on-a-chip personalized biomedical sensors and systems Features concise analyses of the integration of microfluidics and micro-electro-mechanical systems Highlights the use of compressive sensing, super-resolution, and machine learning through the use of smart SoC processing Discusses recent advances in complementary metal oxide semiconductor-integrated lab-on-a-chip systems Includes guidance on DNA sequencing and cell counting applications using dual-mode chemical/optical and energy harvesting sensors The conventional reliance on the microscope, flow cytometry, and DNA sequencing leaves diagnosticians tied to bulky, expensive equipment with a central problem of scale. Lab-on-a-chip technology eliminates these constraints while improving accuracy and flexibility, ushering in a new era of medicine. This book is an essential reference for students, researchers, and engineers working in diagnostic circuitry and microsystems.
Tags from this library: No tags from this library for this title. Log in to add tags.
    Average rating: 0.0 (0 votes)

ABOUT THE AUTHOR
Hao Yu, Southern University of Science and Technology, China, is an assistant professor and area director of the VIRTUS/VALENS Centre of Excellence.

Mei Yan, Consultant, developed lab-on-a-chip biomedical sensor circuits and systems for personalized biomedical diagnosis as a Research Fellow at Nanyang Technological University in Singapore.

Xiwei Huang, Hangzhou Dianzi University, China, is an assistant professor at the School of Electronics and Information.

Includes bibliographical references and index.

Preface x

1 Introduction 1

1.1 Personalized Biomedical Diagnosis 1

1.1.1 Personalized Diagnosis 1

1.1.2 Conventional Biomedical Diagnostic Instruments 3

1.1.2.1 Optical Microscope 3

1.1.2.2 Flow Cytometer 4

1.1.2.3 DNA Sequencer 5

1.2 CMOS Sensor-based Lab-on-a-Chip for System Miniaturization 7

1.2.1 CMOS Sensor-based Lab-on-a-Chip 7

1.2.2 CMOS Sensor 8

1.2.2.1 CMOS Process Fundamentals 8

1.2.2.2 CMOS Sensor Technology 10

1.2.2.3 Multimodal CMOS Sensor 13

1.2.3 Microfluidics 14

1.2.3.1 Microfluidic Fundamentals 14

1.2.3.2 Microfluidics Fabrication 16

1.3 Objectives and Organization of this Book 20

1.3.1 Objectives 20

1.3.2 Organization 20

References 21

2 CMOS Sensor Design 25

2.1 Top Architecture 25

2.2 Noise Overview 25

2.2.1 Thermal Noise 26

2.2.2 Flicker Noise 27

2.2.3 Shot Noise 28

2.2.4 MOSFET Noise Model 29

2.3 Pixel Readout Circuit 29

2.3.1 Source Follower 30

2.3.2 Sub-threshold Gm Integrator 33

2.3.3 CTIA 35

2.4 Column Amplifier 38

2.5 Column ADC 39

2.5.1 Single-Slope ADC 39

2.5.2 Sigma-Delta ADC 43

2.6 Correlated Sampling 49

2.6.1 Correlated Double Sampling 49

2.6.2 Correlated Multiple Sampling 51

2.7 Timing Control 52

2.7.1 Row Timing Control 52

2.7.2 Column Timing Control 55

2.8 LVDS Interface 57

References 59

3 CMOS Impedance Sensor 60

3.1 Introduction 60

3.2 CMOS Impedance Pixel 61

3.3 Readout Circuit 63

3.4 A 96 × 96 Electronic Impedance Sensing System 65

3.4.1 Top Architecture 65

3.4.2 System Implementation 67

3.4.2.1 System Setup 67

3.4.2.2 Sample Preparation 68

3.4.3 Results 68

3.4.3.1 Data Fitting for Single Cell Impedance Measurement 69

3.4.3.2 Cell and Electrode Impedance Analysis 71

3.4.3.3 EIS for Single-Cell Impedance Enumeration 71

References 74

4 CMOS Terahertz Sensor 76

4.1 Introduction 76

4.2 CMOS THz Pixel 76

4.2.1 Differential TL-SRR Resonator Design 76

4.2.1.1 Stacked SRR Layout 76

4.2.1.2 Comparison with Single-ended TL-SRR Resonator 80

4.2.1.3 Comparison with Standing-Wave Resonator 82

4.2.2 Differential TL-CSRR Resonator Design 83

4.3 Readout Circuit 84

4.3.1 Super-regenerative Amplification 84

4.3.1.1 Equivalent Circuit of SRA 84

4.3.1.2 Frequency Response of SRA 86

4.3.1.3 Sensitivity of SRA 86

4.3.2 Super-regenerative Receivers 87

4.3.2.1 Quench-controlled Oscillation 87

4.3.2.2 SRX Design by TL-CSRR 89

4.3.2.3 SRX Design by TL-SRR 91

4.4 A 135 GHz Imager 94

4.4.1 135 GHz DTL-SRR-based Receiver 94

4.4.2 System Implementation 95

4.4.3 Results 95

4.5 Plasmonic Sensor for Circulating Tumor Cell Detection 98

4.5.1 Introduction of CTC Detection 98

4.5.2 SRR-based Oscillator for CTC Detection 99

4.5.3 Sensitivity of SRR-based Oscillator 101

References 103

5 CMOS Ultrasound Sensor 106

5.1 Introduction 106

5.2 CMUT Pixel 107

5.3 Readout Circuit 109

5.4 A 320 × 320 CMUT-based Ultrasound Imaging System 110

5.4.1 Top Architecture 110

5.4.2 System Implementation 111

5.4.2.1 Process Selection 111

5.4.2.2 High Voltage Pulser 112

5.4.2.3 Low-Noise Preamplifier and High Voltage Switch 115

5.4.3 Results 116

5.4.3.1 Simulation Results 116

5.4.3.2 Two-channel AFE IC Measurement Results 117

5.4.3.3 Acoustic Transmission Testing with AFE IC and CMUT 121

5.4.3.4 Acoustic Pulse-echo Testing with AFE IC and CMUT 122

References 124

6 CMOS 3-D-Integrated MEMS Sensor 126

6.1 Introduction 126

6.2 MEMS Sensor 127

6.3 Readout Circuit 127

6.4 A 3-D TSV-less Accelerometer 129

6.4.1 CMOS-on-MEMS Stacking 129

6.4.2 Bonding Reliability 132

6.4.2.1 Al–Au Thermo-compression Shear Strength 132

6.4.2.2 Al–Au Thermo-compression Hermeticity 134

6.4.3 Results 135

6.4.3.1 Standalone Validation of the Readout Circuit 135

6.4.3.2 Functionality Testing of CMOS-on-MEMS Chip 136

6.4.3.3 Reliability Testing of CMOS-on-MEMS Chip 138

References 141

7 CMOS Image Sensor 142

7.1 Introduction 142

7.2 CMOS Image Pixel 145

7.2.1 Structure 145

7.2.1.1 FSI 4 T Pixel 145

7.2.1.2 Back Side Illumination Pixel 147

7.2.1.3 Stack Pixel 148

7.2.2 Noise and Model 150

7.2.2.1 Photon Shot Noise 151

7.2.2.2 Reset Noise 152

7.2.2.3 Thermal Noise 152

7.2.2.4 Flicker Noise 154

7.2.2.5 Fixed Pattern Noise 154

7.3 Readout Circuit 155

7.3.1 Global Serial Readout 156

7.3.2 Correlated Double Sampling 156

7.4 A 3.2 Mega CMOS Image Sensor 158

7.4.1 4-way Shared Pixel Unit 158

7.4.2 Top Architecture 159

7.4.3 System Implementation 162

7.4.4 Results 164

7.4.4.1 System Characterization 164

7.4.4.2 Digital CDS for FPN Reduction 164

7.4.4.3 Blood Cell Imaging Experiments 165

References 167

8 CMOS Dual-mode pH-Image Sensor 169

8.1 Introduction 169

8.2 CMOS Dual-mode pH-Image Pixel 170

8.3 Readout Circuit 172

8.3.1 CDS for Optical Sensing 174

8.3.2 CDS for Chemical Sensing 174

8.4 A 64 × 64 Dual-mode pH-Image Sensor 175

8.4.1 Top Architecture 175

8.4.2 System Implementation 177

8.4.3 Results 177

References 184

9 CMOS Dual-mode Energy-harvesting-image Sensor 186

9.1 Introduction 186

9.2 CMOS EHI Pixel 187

9.3 Readout Circuit 191

9.4 A 96 × 96 EHI Sensing System 195

9.4.1 Top Architecture 195

9.4.2 System Implementation 197

9.4.3 Results 203

References 211

10 DNA Sequencing 213

10.1 Introduction 213

10.2 CMOS ISFET-based Sequencing 213

10.2.1 Overview 213

10.2.2 ISFET-based Sequencing Procedure 215

10.3 CMOS THz-based Genotyping 220

10.3.1 Overview 220

10.3.2 THz-based Genotyping Procedure 220

10.4 Beyond CMOS Nanopore Sequencing 221

10.4.1 Overview 221

10.4.2 Nanopore-based Sequencing Procedure 223

10.5 Summary 227

References 230

11 Cell Counting 231

11.1 Introduction 231

11.2 Optofluidic Imaging System 231

11.2.1 Contact Imaging 231

11.2.2 Optofluidic Imaging System Model 232

11.2.2.1 Resolution Model 232

11.2.2.2 Dynamic Range Model 233

11.2.2.3 Implication to SR Processing 234

11.3 Super-resolution Image Processing 234

11.3.1 Multi-frame SR Processing 235

11.3.2 Single-frame SR Processing 236

11.4 Machine-learning-based Single-frame Super-resolution 237

11.4.1 ELMSR 238

11.4.2 CNNSR 242

11.5 Microfluidic Cytometer for Cell Counting 245

11.5.1 Microfluidic Cytometer System 245

11.5.1.1 System Overview 245

11.5.1.2 Microfluidic Channel Fabrication 246

11.5.1.3 Microbead and Cell Sample Preparation 246

11.5.1.4 Microfluidic Cytometer Design 247

11.5.1.5 Cell Detection 248

11.5.1.6 Cell Recognition 249

11.5.1.7 Cell Counting 250

11.5.2 Results 250

11.5.2.1 Counting Performance Characterization 250

11.5.2.2 Off-Line SR Training 251

11.5.2.3 On-line SR Testing 253

11.5.2.4 On-line Cell Recognition and Counting 254

References 255

12 Conclusion 258

12.1 Summaries 258

12.2 Future Works 260

Index 262

A thorough examination of lab-on-a-chip circuit-level operations to improve system performance

A rapidly aging population demands rapid, cost-effective, flexible, personalized diagnostics. Existing systems tend to fall short in one or more capacities, making the development of alternatives a priority. CMOS Integrated Lab-on-a-Chip System for Personalized Biomedical Diagnosis provides insight toward the solution, with a comprehensive, multidisciplinary reference to the next wave of personalized medicine technology.

A standard complementary metal oxide semiconductor (CMOS) fabrication technology allows mass-production of large-array, miniaturized CMOS-integrated sensors from multi-modal domains with smart on-chip processing capability. This book provides an in-depth examination of the design and mechanics considerations that make this technology a promising platform for microfluidics, micro-electro-mechanical systems, electronics, and electromagnetics.

From CMOS fundamentals to end-user applications, all aspects of CMOS sensors are covered, with frequent diagrams and illustrations that clarify complex structures and processes. Detailed yet concise, and designed to help students and engineers develop smaller, cheaper, smarter lab-on-a-chip systems, this invaluable reference:

Provides clarity and insight on the design of lab-on-a-chip personalized biomedical sensors and systems
Features concise analyses of the integration of microfluidics and micro-electro-mechanical systems
Highlights the use of compressive sensing, super-resolution, and machine learning through the use of smart SoC processing
Discusses recent advances in complementary metal oxide semiconductor-integrated lab-on-a-chip systems
Includes guidance on DNA sequencing and cell counting applications using dual-mode chemical/optical and energy harvesting sensors
The conventional reliance on the microscope, flow cytometry, and DNA sequencing leaves diagnosticians tied to bulky, expensive equipment with a central problem of scale. Lab-on-a-chip technology eliminates these constraints while improving accuracy and flexibility, ushering in a new era of medicine. This book is an essential reference for students, researchers, and engineers working in diagnostic circuitry and microsystems.

600-699 610

Description based on print version record and CIP data provided by publisher.

There are no comments for this item.

to post a comment.