Design and analysis of experiments / Douglas C. Montgomery

By: Montgomery, Douglas C [author]
Language: English Publisher: Hoboken, NJ : John Wiley & Sons, Inc., c2005Edition: Sixth EditionDescription: xv, 643 pages : illustrations ; 26 cmContent type: text Media type: unmediated Carrier type: volume ISBN: 047148735X (hbk.); 9780471487357Subject(s): Experimental designDDC classification: 001.424 LOC classification: QA279 | .M66 2005Online resources: Contributor biographical information | Publisher description | Table of contents only
Contents:
Chapter 1. Introduction -- Chapter 2. Simple Comparative Experiments -- Chapter 3. Experiments with a Single Factor: The Analysis of Variance -- Chapter 4. Randomized Blocks, Latin Squares, and Related Designs -- Chapter 5. Introduction to Factorial Designs -- Chapter 6. The 2k Factorial Design -- Chapter 7. Blocking and Confounding in the 2k Factorial Design -- Chapter 8. Two-Level Fractional Factorial Designs -- Chapter 9. Three-Level and Mixed-Level Factorial and Fractional Factorial Designs -- Chapter 10. Fitting Regression Models -- Chapter 11. Response Surface methods and Designs -- Chapter 12. Robust Parameter Design and Process Robustness Studies -- Chapter 13. Experiments with Random Factors -- Chapter 14. Nested and Split-Plot Designs -- Chapter 15. Other Design and Analysis Topics -- Bibliography -- Appendix -- Table I: Cumulative Standard Normal Distribution -- Table II: Percentage Points of the t Distribution -- Table III: Percentage Points of the X² Distribution -- Table IV: Percentage Points of the F Distribution -- Table V: Operating Characteristic Curves for the Fixed Effects Model Analysis of Variance -- Table VI: Operating Characteristic Curves for the Random Effects Model Analysis of Variance -- Table VII: Percentage Points of the Studentized Range Statistic -- Table VIII: Critical Values for Dunnett's Test for Comparing Treatments with a Control -- Table IX: Coefficients of Orthogonal Polynomials -- Table X: Alias Relationships for 2 k⁻p Fractional Factorial Designs with K̲̲<15 and n<64.
Tags from this library: No tags from this library for this title. Log in to add tags.
    Average rating: 0.0 (0 votes)
Item type Current location Home library Call number Status Date due Barcode Item holds
BOOK BOOK COLLEGE LIBRARY
COLLEGE LIBRARY
SUBJECT REFERENCE
001.434 M766 2005 (Browse shelf) Available CITU-CL-32212
Total holds: 0

Previous ed.: 2001.

Includes bibliographical references (p. 595-601) and index.

Chapter 1. Introduction --
Chapter 2. Simple Comparative Experiments --
Chapter 3. Experiments with a Single Factor: The Analysis of Variance --
Chapter 4. Randomized Blocks, Latin Squares, and Related Designs --
Chapter 5. Introduction to Factorial Designs --
Chapter 6. The 2k Factorial Design --
Chapter 7. Blocking and Confounding in the 2k Factorial Design --
Chapter 8. Two-Level Fractional Factorial Designs --
Chapter 9. Three-Level and Mixed-Level Factorial and Fractional Factorial Designs --
Chapter 10. Fitting Regression Models --
Chapter 11. Response Surface methods and Designs --
Chapter 12. Robust Parameter Design and Process Robustness Studies --
Chapter 13. Experiments with Random Factors --
Chapter 14. Nested and Split-Plot Designs --
Chapter 15. Other Design and Analysis Topics --
Bibliography --
Appendix --
Table I: Cumulative Standard Normal Distribution --
Table II: Percentage Points of the t Distribution --
Table III: Percentage Points of the X² Distribution --
Table IV: Percentage Points of the F Distribution --
Table V: Operating Characteristic Curves for the Fixed Effects Model Analysis of Variance --
Table VI: Operating Characteristic Curves for the Random Effects Model Analysis of Variance --
Table VII: Percentage Points of the Studentized Range Statistic --
Table VIII: Critical Values for Dunnett's Test for Comparing Treatments with a Control --
Table IX: Coefficients of Orthogonal Polynomials --
Table X: Alias Relationships for 2 k⁻p Fractional Factorial Designs with K̲̲<15 and n<64.

There are no comments for this item.

to post a comment.