Chemical process equipment design / Richard Turton, Joseph A. Shaeiwitz.

By: Turton, Richard, 1955- [author.]
Contributor(s): Shaeiwitz, Joseph A [author.]
Language: English Series: Prentice-Hall international series in the physical and chemical engineering sciences: Publisher: Boston : Prentice Hall, [2017]Description: xv, 391 pages ; illustrations ; 26 cmContent type: text Media type: unmediated Carrier type: volumeISBN: 9780133804478Subject(s): Chemical processes -- Equipment and supplies -- Design and constructionDDC classification: 660.283 LOC classification: TP157 | .T87 2017
Contents:
1 Process Fluid Mechanics -- 1.0.Introduction -- 1.1.Basic Relationships in Fluid Mechanics -- 1.1.1.Mass Balance -- 1.1.2.Mechanical Energy Balance -- 1.1.3.Force Balance -- 1.2.Fluid Flow Equipment -- 1.2.1.Pipes -- 1.2.2.Valves -- 1.2.3.Pumps -- 1.2.4.Compressors -- 1.3.Frictional Pipe Flow -- 1.3.1.Calculating Fractional Losses -- 1.3.2.Incompressible Flow -- 1.3.3.Compressible Flow -- 1.3.4.Choked Flow -- 1.4.Other Flow Situations -- 1.4.1.Flow Past Submerged Objects -- 1.4.2.Fluidized Beds -- 1.4.3.Flowrate Measurement -- 1.5.Performance of Fluid Flow Equipment -- 1.5.1.Base-Case Ratios -- 1.5.2.Net Positive Suction Head -- 1.5.3.Pump and System Curves -- 1.5.4.Compressors -- 1.5.5.Performance of the Feed Section to a Process -- ch. 2 Process Heat Transfer -- 2.0.Introduction -- 2.1.Basic Heat-Exchanger Relationships -- 2.1.1.Counter current Flow -- 2.1.2.Cocurrent Flow -- 2.1.3.Streams with Phase Changes Note continued: 2.1.4.Nonlinear Q versus T Curves -- 2.1.5.Overall Heat Transfer Coefficient, U, Varies along the Exchanger -- 2.2.Heat-Exchange Equipment Design and Characteristics -- 2.2.1.Shell-and-Tube Heat Exchangers -- 2.3.LMTD Correction Factor for Multiple Shell and Tube Passes -- 2.3.1.Background -- 2.3.2.Basic Configuration of a Single-Shell-Pass, Double-Tube-Pass (1-2) Exchanger -- 2.3.3.Multiple Shell-and-Tube-Pass Exchangers -- 2.3.4.Cross-Flow Exchangers -- 2.3.5.LMTD Correction and Phase Change -- 2.4.Overall Heat Transfer Coefficients-Resistances in Series -- 2.5.Estimation of Individual Heat Transfer Coefficients and Fouling Resistances -- 2.5.1.Heat Transfer Resistances Due to Fouling -- 2.5.2.Thermal Conductivities of Common Metals and Tube Properties -- 2.53.Correlations for Film Heat Transfer Coefficients -- 2.6.Extended Surfaces -- 2.6.1.Rectangular Fin with Constant Thickness -- 2.6.2.Fin Efficiency for Other Fin Geometries Note continued: 2.6.3.Total Heat Transfer Surface Effectiveness -- 2.7.Algorithm and Worked Examples for the Design of Heat Exchangers -- 2.7.1.Pressure Drop Considerations -- 2.7.2.Design Algorithm -- 2.8.Performance Problems -- 2.8.1.What Variables to Specify in Performance Problems -- 2.8.2.Using Ratios to Determine Heat-Exchanger Performance -- 2.8.3.Worked Examples for Performance Problems -- ch. 3 Separation Equipment -- 3.0.Introduction -- 3.1.Basic Relationships in Separations -- 3.1.1.Mass Balances -- 3.1.2.Energy Balances -- 3.1.3.Equilibrium Relationships -- 3.1.4.Mass Transfer Relationships -- 3.1.5.Rate Expressions -- 3.2.Illustrative Diagrams -- 3.2.1.TP-xy Diagrams -- 3.2.2.McCabe -- Thiele Diagram -- 3.2.3.Dilute Solutions -- The Kremser and Colburn Methods -- 3.3.Equipment -- 3.3.1.Drums -- 3.3.2.Tray Towers -- 3.3.3.Packed Towers -- 3.3.4.Tray Tower or Packed Tower? -- 3.3.5.Performance of Packed and Tray Towers -- 3.4.Extraction Equipment Note continued: 3.4.1.Mixer-Settlers -- 3.4.2.Static and Pulsed Columns -- 3.4.3.Agitated Columns -- 3.4.4.Centrifugal Extractors -- 3.5.Gas Permeation Membrane Separations -- 3.5.1.Equipment -- 3.5.2.Models for Gas Permeation Membranes -- 3.5.3.Practical Issues -- ch. 4 Reactors -- 4.0.Introduction -- 4.1.Basic Relationships -- 4.1.1.Kinetics -- 4.1.2.Equilibrium -- 4.1.3.Additional Mass Transfer Effects -- 4.1.4.Mass Balances -- 4.1.5.Energy Balances -- 4.1.6.Reactor Models -- 4.2.Equipment Design for Nonisothermal Conditions -- 4.2.1.Nonisothermal Continuous Stirred Tank Reactor -- 4.2.2.Nonisothermal Plug Flow Reactor -- 4.2.3.Fluidized Bed Reactor -- 4.3.Performance Problems -- 4.3.1.Ratios for Simple Cases -- 4.3.2.More Complex Examples -- ch. 5 Other Equipment -- 5.0.Introduction -- 5.1.Pressure Vessels -- 5.1.1.Material Properties -- 5.1.2.Basic Design Equations -- 5.2.Knockout Drums or Simple Phase Separators -- 5.2.1.Vapor-Liquid (V-L) Separation Note continued: 5.2.2.Design of Vertical V-L Separators -- 5.2.3.Design of Horizontal V-L Separators -- 5.2.4.Mist Eliminators and Other Internals -- 5.2.5.Liquid-Liquid (L-L) Separation -- 5.3.Steam Ejectors -- 5.3.1.Estimating Air Leaks into Vacuum Systems and the Load for Steam Ejectors -- 5.3.2.Single-Stage Steam Ejectors -- 5.3.3.Multistage Steam Ejectors -- 5.3.4.Performance of Steam Ejectors
Tags from this library: No tags from this library for this title. Log in to add tags.
    Average rating: 0.0 (0 votes)
Item type Current location Home library Call number Status Date due Barcode Item holds
BOOK BOOK COLLEGE LIBRARY
COLLEGE LIBRARY
SUBJECT REFERENCE
660.283 T869 2017 (Browse shelf) Available CITU-CL-49595
Total holds: 0

Includes index.

1 Process Fluid Mechanics --
1.0.Introduction --
1.1.Basic Relationships in Fluid Mechanics --
1.1.1.Mass Balance --
1.1.2.Mechanical Energy Balance --
1.1.3.Force Balance --
1.2.Fluid Flow Equipment --
1.2.1.Pipes --
1.2.2.Valves --
1.2.3.Pumps --
1.2.4.Compressors --
1.3.Frictional Pipe Flow --
1.3.1.Calculating Fractional Losses --
1.3.2.Incompressible Flow --
1.3.3.Compressible Flow --
1.3.4.Choked Flow --
1.4.Other Flow Situations --
1.4.1.Flow Past Submerged Objects --
1.4.2.Fluidized Beds --
1.4.3.Flowrate Measurement --
1.5.Performance of Fluid Flow Equipment --
1.5.1.Base-Case Ratios --
1.5.2.Net Positive Suction Head --
1.5.3.Pump and System Curves --
1.5.4.Compressors --
1.5.5.Performance of the Feed Section to a Process --
ch. 2 Process Heat Transfer --
2.0.Introduction --
2.1.Basic Heat-Exchanger Relationships --
2.1.1.Counter current Flow --
2.1.2.Cocurrent Flow --
2.1.3.Streams with Phase Changes Note continued: 2.1.4.Nonlinear Q versus T Curves --
2.1.5.Overall Heat Transfer Coefficient, U, Varies along the Exchanger --
2.2.Heat-Exchange Equipment Design and Characteristics --
2.2.1.Shell-and-Tube Heat Exchangers --
2.3.LMTD Correction Factor for Multiple Shell and Tube Passes --
2.3.1.Background --
2.3.2.Basic Configuration of a Single-Shell-Pass, Double-Tube-Pass (1-2) Exchanger --
2.3.3.Multiple Shell-and-Tube-Pass Exchangers --
2.3.4.Cross-Flow Exchangers --
2.3.5.LMTD Correction and Phase Change --
2.4.Overall Heat Transfer Coefficients-Resistances in Series --
2.5.Estimation of Individual Heat Transfer Coefficients and Fouling Resistances --
2.5.1.Heat Transfer Resistances Due to Fouling --
2.5.2.Thermal Conductivities of Common Metals and Tube Properties --
2.53.Correlations for Film Heat Transfer Coefficients --
2.6.Extended Surfaces --
2.6.1.Rectangular Fin with Constant Thickness --
2.6.2.Fin Efficiency for Other Fin Geometries Note continued: 2.6.3.Total Heat Transfer Surface Effectiveness --
2.7.Algorithm and Worked Examples for the Design of Heat Exchangers --
2.7.1.Pressure Drop Considerations --
2.7.2.Design Algorithm --
2.8.Performance Problems --
2.8.1.What Variables to Specify in Performance Problems --
2.8.2.Using Ratios to Determine Heat-Exchanger Performance --
2.8.3.Worked Examples for Performance Problems --
ch. 3 Separation Equipment --
3.0.Introduction --
3.1.Basic Relationships in Separations --
3.1.1.Mass Balances --
3.1.2.Energy Balances --
3.1.3.Equilibrium Relationships --
3.1.4.Mass Transfer Relationships --
3.1.5.Rate Expressions --
3.2.Illustrative Diagrams --
3.2.1.TP-xy Diagrams --
3.2.2.McCabe --
Thiele Diagram --
3.2.3.Dilute Solutions --
The Kremser and Colburn Methods --
3.3.Equipment --
3.3.1.Drums --
3.3.2.Tray Towers --
3.3.3.Packed Towers --
3.3.4.Tray Tower or Packed Tower? --
3.3.5.Performance of Packed and Tray Towers --
3.4.Extraction Equipment Note continued: 3.4.1.Mixer-Settlers --
3.4.2.Static and Pulsed Columns --
3.4.3.Agitated Columns --
3.4.4.Centrifugal Extractors --
3.5.Gas Permeation Membrane Separations --
3.5.1.Equipment --
3.5.2.Models for Gas Permeation Membranes --
3.5.3.Practical Issues --
ch. 4 Reactors --
4.0.Introduction --
4.1.Basic Relationships --
4.1.1.Kinetics --
4.1.2.Equilibrium --
4.1.3.Additional Mass Transfer Effects --
4.1.4.Mass Balances --
4.1.5.Energy Balances --
4.1.6.Reactor Models --
4.2.Equipment Design for Nonisothermal Conditions --
4.2.1.Nonisothermal Continuous Stirred Tank Reactor --
4.2.2.Nonisothermal Plug Flow Reactor --
4.2.3.Fluidized Bed Reactor --
4.3.Performance Problems --
4.3.1.Ratios for Simple Cases --
4.3.2.More Complex Examples --
ch. 5 Other Equipment --
5.0.Introduction --
5.1.Pressure Vessels --
5.1.1.Material Properties --
5.1.2.Basic Design Equations --
5.2.Knockout Drums or Simple Phase Separators --
5.2.1.Vapor-Liquid (V-L) Separation Note continued: 5.2.2.Design of Vertical V-L Separators --
5.2.3.Design of Horizontal V-L Separators --
5.2.4.Mist Eliminators and Other Internals --
5.2.5.Liquid-Liquid (L-L) Separation --
5.3.Steam Ejectors --
5.3.1.Estimating Air Leaks into Vacuum Systems and the Load for Steam Ejectors --
5.3.2.Single-Stage Steam Ejectors --
5.3.3.Multistage Steam Ejectors --
5.3.4.Performance of Steam Ejectors

600-699

There are no comments for this item.

to post a comment.