Mathematics and philosophy / (Record no. 88992)

000 -LEADER
fixed length control field 10753nam a22004697a 4500
003 - CONTROL NUMBER IDENTIFIER
control field CITU
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20241018103732.0
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 241018b |||||o|||| 00| 0 eng d
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9781119527794
Qualifying information (electronic bk.)
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 1119527791
Qualifying information (electronic bk.)
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9781119426813
Qualifying information (electronic bk.)
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 1119426812
Qualifying information (electronic bk.)
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
Cancelled/invalid ISBN 9781786302090
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
Cancelled/invalid ISBN 1786302098
035 ## - SYSTEM CONTROL NUMBER
System control number (OCoLC)1037946124
Canceled/invalid control number (OCoLC)1038058507
040 ## - CATALOGING SOURCE
Original cataloging agency N$T
Language of cataloging eng
Description conventions rda
-- pn
Transcribing agency N$T
Modifying agency N$T
-- EBLCP
-- DG1
-- YDX
-- OCLCF
-- RECBK
-- MERER
-- UAB
041 ## - LANGUAGE CODE
Language code of text/sound track or separate title eng
050 #4 - LIBRARY OF CONGRESS CALL NUMBER
Classification number QA8.4
072 #7 - SUBJECT CATEGORY CODE
Subject category code MAT
Subject category code subdivision 039000
Source bisacsh
072 #7 - SUBJECT CATEGORY CODE
Subject category code MAT
Subject category code subdivision 023000
Source bisacsh
072 #7 - SUBJECT CATEGORY CODE
Subject category code MAT
Subject category code subdivision 026000
Source bisacsh
082 04 - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 510.1
Edition number 23
100 1# - MAIN ENTRY--PERSONAL NAME
Preferred name for the person Parrochia, Daniel,
Dates associated with a name 1951-
Authority record control number http://id.loc.gov/authorities/names/n92042544
Relator term author.
245 10 - TITLE STATEMENT
Title Mathematics and philosophy /
Statement of responsibility, etc Daniel Parrochia.
264 #1 - PUBLICATION, DISTRIBUTION, ETC. (IMPRINT)
Place of publication, distribution, etc London :
Name of publisher, distributor, etc ISTE Ltd ;
Place of publication, distribution, etc Hoboken, NJ :
Name of publisher, distributor, etc John Wiley & Sons, Inc.,
Date of publication, distribution, etc 2018.
300 ## - PHYSICAL DESCRIPTION
Extent 1 online resource.
336 ## - CONTENT TYPE
Content type term text
Content type code txt
Source rdacontent.
337 ## - MEDIA TYPE
Media type term computer
Media type code c
Source rdamedia.
338 ## - CARRIER TYPE
Carrier type term online resource
Carrier type code cr
Source rdacarrier.
340 ## - PHYSICAL MEDIUM
Source rdacc
Authority record control number or standard number http://rdaregistry.info/termList/RDAColourContent/1003.
490 1# - SERIES STATEMENT
Series statement Mathematics and statistics series.
504 ## - BIBLIOGRAPHY, ETC. NOTE
Bibliography, etc Includes bibliographical references and index.
505 0# - CONTENTS
Formatted contents note Table of Contents<br/>Introduction xi<br/><br/>Part 1. The Contribution of Mathematician–Philosophers 1<br/><br/>Introduction to Part 1 3<br/><br/>Chapter 1. Irrational Quantities 7<br/><br/>1.1. The appearance of irrationals or the end of the Pythagorean dream 8<br/><br/>1.2. The first philosophical impact 9<br/><br/>1.3. Consequences of the discovery of irrationals 11<br/><br/>1.3.1. The end of the eternal return 11<br/><br/>1.3.2. Abandoning the golden ratio 11<br/><br/>1.3.3. The problem of di3.1sorder in medicine, morals and politics 12<br/><br/>1.4. Possible solutions 12<br/><br/>1.5. A famous example: the golden number 14<br/><br/>1.6. Plato and the dichotomic processes 16<br/><br/>1.7. The Platonic generalization of ancient Pythagoreanism 17<br/><br/>1.7.1. The Divided Line analogy 17<br/><br/>1.7.2. The algebraic interpretation 18<br/><br/>1.7.2.1. Impossibilities 19<br/><br/>1.7.2.2. The case where k = Ø 19<br/><br/>1.8. Epistemological consequences: the evolution of reason 20<br/><br/>Chapter 2. All About the Doubling of the Cube 23<br/><br/>2.1. History of the question of doubling a cube 24<br/><br/>2.2. The non-rationality of the solution 24<br/><br/>2.2.1. Demonstration 24<br/><br/>2.2.2. The diagonal is not a solution 25<br/><br/>2.3. The theory proposed by Hippocrates of Chios 25<br/><br/>2.4. A philosophical application: platonic cosmology 27<br/><br/>2.5. The problem and its solutions 29<br/><br/>2.5.1. The future of the problem 29<br/><br/>2.5.2. Some solutions proposed by authors of the classical age 30<br/><br/>2.5.2.1. Mechanical solutions 30<br/><br/>2.5.2.2. Analytical solution 31<br/><br/>2.5.3. The doubling of the cube – going beyond Archytas: the evolution of mathematical methods 36<br/><br/>2.5.3.1. Menaechmus’ solution 37<br/><br/>2.5.3.2. A brief overview of the other solutions 39<br/><br/>2.6. The trisection of an angle 40<br/><br/>2.6.1. Bold mathematicians 40<br/><br/>2.6.2. Plato, the tripartition of the soul and self-propulsion 42<br/><br/>2.6.3. A very essential shell 44<br/><br/>2.6.4. A final excercus 46<br/><br/>2.7. Impossible problems and badly formulated problems 46<br/><br/>2.8. The modern demonstration 47<br/><br/>Chapter 3. Quadratures, Trigonometry and Transcendance 51<br/><br/>3.1. π – the mysterious number 52<br/><br/>3.2. The error of the “squarers” 53<br/><br/>3.3. The explicit computation of π 55<br/><br/>3.4. Trigonometric considerations 57<br/><br/>3.5. The paradoxical philosophy of Nicholas of Cusa 59<br/><br/>3.5.1. An attempt at computing an approximate value for π 59<br/><br/>3.5.2. Philosophical extension 61<br/><br/>3.6. What came next and the conclusion to the history of π 63<br/><br/>3.6.1. The age of infinite products 64<br/><br/>3.6.2. Machin’s algorithm 64<br/><br/>3.6.3. The problem of the nature of π 65<br/><br/>3.6.4. Numerical and philosophical transcendance: Kant, Lambert and Legendre 66<br/><br/>Part 2. Mathematics Becomes More Powerful 69<br/><br/>Introduction to Part 2 71<br/><br/>Chapter 4. Exploring Mathesis in the 17th Century 75<br/><br/>4.1. The innovations of Cartesian mathematics 76<br/><br/>4.2. The “plan” for Descartes’ Geometry 79<br/><br/>4.3. Studying the classification of curves 79<br/><br/>4.3.1. Possible explanations for the mistakes made by the Ancients 81<br/><br/>4.3.2. Conditions for the admissibility of curves in geometry 83<br/><br/>4.4. Legitimate constructions 85<br/><br/>4.5. Scientific consequences of Cartesian definitions 87<br/><br/>4.6. Metaphysical consequences of Cartesian mathematics 88<br/><br/>Chapter 5. The Question of Infinitesimals 91<br/><br/>5.1. Antiquity – the prehistory of the infinite 92<br/><br/>5.1.1. Infinity as Anaximander saw it 92<br/><br/>5.1.2. The problem of irrationals and Zeno’s paradoxes 93<br/><br/>5.1.3. Aristotle and the dual nature of the Infinite 96<br/><br/>5.2. The birth of the infinitesimal calculus 98<br/><br/>5.2.1. Newton’s Writings 99<br/><br/>5.2.2. Leibniz’s contribution 101<br/><br/>5.2.3. The impact of calculus on Leibnizian philosophy 105<br/><br/>5.2.3.1. Small perceptions and differentials 105<br/><br/>5.2.3.2. Matter and living beings 109<br/><br/>5.2.3.3. The image of order 110<br/><br/>5.2.4. The epistemological problem 117<br/><br/>Chapter 6. Complexes, Logarithms and Exponentials 121<br/><br/>6.1. The road to complex numbers 122<br/><br/>6.2. Logarithms and exponentials 125<br/><br/>6.3. De Moivre’s and Euler’s formulas 128<br/><br/>6.4. Consequences on Hegelian philosophy 130<br/><br/>6.5. Euler’s formula 132<br/><br/>6.6. Euler, Diderot and the existence of God 133<br/><br/>6.7. The approximation of functions 134<br/><br/>6.7.1. Taylor’s formula 135<br/><br/>6.7.2. MacLaurin’s formula 135<br/><br/>6.8. Wronski’s philosophy and mathematics 137<br/><br/>6.8.1. The Supreme Law of Mathematics 138<br/><br/>6.8.2. Philosophical interpretation 142<br/><br/>6.9. Historical positivism and spiritual metaphysics 143<br/><br/>6.9.1. Comte’s vision of mathematics 143<br/><br/>6.9.2. Renouvier’s reaction 146<br/><br/>6.9.3. Spiritualist derivatives 147<br/><br/>6.10. The physical interest of complex numbers 148<br/><br/>6.11. Consequences on Bergsonian philosophy 150<br/><br/>Part 3. Significant Advances 155<br/><br/>Introduction to Part 3 157<br/><br/>Chapter 7. Chance, Probability and Metaphysics 161<br/><br/>7.1. Calculating probability: a brief history 162<br/><br/>7.2. Pascal’s “wager” 166<br/><br/>7.2.1. The Pensées passage 166<br/><br/>7.2.2. The formal translation 167<br/><br/>7.2.3. Criticism and commentary 167<br/><br/>7.2.3.1. Laplace’s criticism 167<br/><br/>7.2.3.2. Emile Borel’s observation 169<br/><br/>7.2.3.3. Decision theory 170<br/><br/>7.2.3.4. The non-standard analysis framework 171<br/><br/>7.3. Social applications, from Condorcet to Musil 172<br/><br/>7.4. Chance, coincidences and omniscience 174<br/><br/>Chapter 8. The Geometric Revolution 179<br/><br/>8.1. The limits of the Euclidean demonstrative ideal 180<br/><br/>8.2. Contesting Euclidean geometry 183<br/><br/>8.3. Bolyai’s and Lobatchevsky geometries 184<br/><br/>8.4. Riemann’s elliptical geometry 191<br/><br/>8.5. Bachelard and the philosophy of “non” 194<br/><br/>8.6. The unification of Geometry by Beltrami and Klein 196<br/><br/>8.7. Hilbert’s axiomatization 198<br/><br/>8.8. The reception of non-Euclidean geometries 200<br/><br/>8.9. A distant impact: Finsler’s philosophy 200<br/><br/>Chapter 9. Fundamental Sets and Structures 203<br/><br/>9.1. Controversies surrounding the infinitely large 203<br/><br/>9.2. The concept of “the power of a set” 207<br/><br/>9.2.1. The “countable” and the “continuous” 208<br/><br/>9.2.2. The uniqueness of the continuum 209<br/><br/>9.2.3. Continuum hypothesis and generalized continuum hypothesis . . . 212<br/><br/>9.3. The development of set theory 213<br/><br/>9.4. The epistemological route and others 218<br/><br/>9.5. Analytical philosophy and its masters 222<br/><br/>9.6. Husserl with Gödel? 225<br/><br/>9.7. Appendix: Gödel’s ontological proof 226<br/><br/>Part 4. The Advent of Mathematician-Philosophers 229<br/><br/>Introduction to Part 4 231<br/><br/>Chapter 10. The Rise of Algebra 233<br/><br/>10.1. Boolean algebra and its consequences 234<br/><br/>10.2. The birth of general algebra 237<br/><br/>10.3. Group theory 238<br/><br/>10.4. Linear algebra and non-commutative algebra 241<br/><br/>10.5. Clifford: a philosopher-mathematician 245<br/><br/>Chapter 11. Topology and Differential Geometry 253<br/><br/>11.1. Topology 253<br/><br/>11.1.1. Continuity and neighborhood 254<br/><br/>11.1.2. Fundamental definitions and theorems 255<br/><br/>11.1.3. Properties of topological spaces 257<br/><br/>11.1.4. Philosophy of classifications versus topology of the being 261<br/><br/>11.2. Models of differential geometry 262<br/><br/>11.2.1. Space as a support to thought 262<br/><br/>11.2.2. The general concept of manifold 263<br/><br/>11.2.3. The formal concept of differential manifold 264<br/><br/>11.2.4. The general theory of differential manifold 265<br/><br/>11.2.5. G-structures and connections 266<br/><br/>11.3. Some philosophical consequences 268<br/><br/>11.3.1. Whitehead’s philosophy and relativity 269<br/><br/>11.3.2. Lautman’s singular work 270<br/><br/>11.3.3. Thom and the catastrophe theory 273<br/><br/>Chapter 12. Mathematical Research and Philosophy 279<br/><br/>12.1. The different domains 279<br/><br/>12.2. The development of classical mathematics 282<br/><br/>12.3. Number theory and algebra 282<br/><br/>12.4. Geometry and algebraic topology 284<br/><br/>12.5. Category and sheaves: tools that help in globalization 286<br/><br/>12.5.1. Category theory 286<br/><br/>12.5.2. The Sheaf theory 292<br/><br/>12.5.3. Link to philosophy 294<br/><br/>12.5.4. Philosophical impact 295<br/><br/>12.6. Grothendieck’s unitary vision 295<br/><br/>12.6.1. Schemes 295<br/><br/>12.6.2. Topoi 296<br/><br/>12.6.3. Motives 298<br/><br/>12.6.4. Philosophical consequences of motives 301<br/><br/>Conclusion 305<br/><br/>Bibliography 311<br/><br/>Index 327
520 ## - SUMMARY, ETC.
Summary, etc This book, which studies the links between mathematics and philosophy, highlights a reversal. Initially, the (Greek) philosophers were also mathematicians (geometers). Their vision of the world stemmed from their research in this field (rational and irrational numbers, problem of duplicating the cube, trisection of the angle). Subsequently, mathematicians freed themselves from philosophy (with Analysis, differential Calculus, Algebra, Topology, etc.), but their researches continued to inspire philosophers (Descartes, Leibniz, Hegel, Husserl, etc.). However, from a certain level of complexity, the mathematicians themselves became philosophers (a movement that begins with Wronsky and Clifford, and continues until Grothendieck)
545 0# - BIOGRAPHICAL OR HISTORICAL DATA
Biographical or historical note About the Author<br/>Parrochia Daniel, Université Jean Moulin, Lyon.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name as entry element Mathematics
General subdivision Philosophy.
Authority record control number http://id.loc.gov/authorities/subjects/sh85082153.
655 #4 - INDEX TERM--GENRE/FORM
Genre/form data or focus term Electronic books.
776 08 - ADDITIONAL PHYSICAL FORM ENTRY
Qualifying information Original
International Standard Book Number 1786302098
-- 9781786302090
Record control number (OCoLC)1011012502.
830 #0 - SERIES ADDED ENTRY--UNIFORM TITLE
Uniform title Mathematics and statistics series (ISTE)
Authority record control number http://id.loc.gov/authorities/names/no2014013650.
856 40 - ELECTRONIC LOCATION AND ACCESS
Uniform Resource Identifier https://onlinelibrary.wiley.com/doi/book/10.1002/9781119426813
Link text Full text available at Wiley Online Library Click here to view
942 ## - ADDED ENTRY ELEMENTS
Source of classification or shelving scheme
Item type EBOOK
Holdings
Withdrawn status Lost status Source of classification or shelving scheme Damaged status Not for loan Permanent Location Current Location Date acquired Source of acquisition Cost, normal purchase price Inventory number Full call number Barcode Date last seen Price effective from Item type
          COLLEGE LIBRARY COLLEGE LIBRARY 2024-10-18 ALBASA 13258.06 53713 510.1 P2493 2018 CL-53713 2024-10-18 2024-10-18 EBOOK