000 -LEADER |
fixed length control field |
12872cam a2200445Ii 4500 |
003 - CONTROL NUMBER IDENTIFIER |
control field |
CITU |
005 - DATE AND TIME OF LATEST TRANSACTION |
control field |
20240924145303.0 |
006 - FIXED-LENGTH DATA ELEMENTS--ADDITIONAL MATERIAL CHARACTERISTICS--GENERAL INFORMATION |
fixed length control field |
m o d |
007 - PHYSICAL DESCRIPTION FIXED FIELD--GENERAL INFORMATION |
fixed length control field |
cr |n||||||||| |
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION |
fixed length control field |
240924b ||||| |||| 00| 0 eng d |
020 ## - INTERNATIONAL STANDARD BOOK NUMBER |
International Standard Book Number |
9783527340644 |
020 ## - INTERNATIONAL STANDARD BOOK NUMBER |
International Standard Book Number |
9783527699483 |
Qualifying information |
(electronic bk. : oBook) |
020 ## - INTERNATIONAL STANDARD BOOK NUMBER |
International Standard Book Number |
3527699481 |
Qualifying information |
(electronic bk. : oBook) |
020 ## - INTERNATIONAL STANDARD BOOK NUMBER |
International Standard Book Number |
9783527699476 |
Qualifying information |
(electronic bk.) |
020 ## - INTERNATIONAL STANDARD BOOK NUMBER |
International Standard Book Number |
3527699473 |
Qualifying information |
(electronic bk.) |
020 ## - INTERNATIONAL STANDARD BOOK NUMBER |
Cancelled/invalid ISBN |
3527340645 |
020 ## - INTERNATIONAL STANDARD BOOK NUMBER |
Cancelled/invalid ISBN |
9783527340644 |
035 ## - SYSTEM CONTROL NUMBER |
System control number |
(OCoLC)1144919891 |
040 ## - CATALOGING SOURCE |
Original cataloging agency |
YDX |
Language of cataloging |
eng |
Description conventions |
rda |
Transcribing agency |
YDX |
Modifying agency |
N$T |
-- |
DG1 |
-- |
OCLCF |
041 ## - LANGUAGE CODE |
Language code of text/sound track or separate title |
eng |
050 #4 - LIBRARY OF CONGRESS CALL NUMBER |
Classification number |
TP156.F65 |
082 04 - DEWEY DECIMAL CLASSIFICATION NUMBER |
Classification number |
660.284292 |
Edition number |
23 |
245 00 - TITLE STATEMENT |
Title |
Essentials of fluidization technology / |
Statement of responsibility, etc |
edited by John R. Grace, Xiaotao Bi, Naoko Ellis. |
264 #1 - PUBLICATION, DISTRIBUTION, ETC. (IMPRINT) |
Place of publication, distribution, etc |
Weinheim : |
Name of publisher, distributor, etc |
Wiley-VCH, |
Date of publication, distribution, etc |
2019. |
300 ## - PHYSICAL DESCRIPTION |
Extent |
1 online resource. |
336 ## - CONTENT TYPE |
Content type term |
text |
Content type code |
txt |
Source |
rdacontent. |
337 ## - MEDIA TYPE |
Media type term |
computer |
Media type code |
c |
Source |
rdamedia. |
338 ## - CARRIER TYPE |
Carrier type term |
online resource |
Carrier type code |
cr |
Source |
rdacarrier. |
505 ## - CONTENTS |
Formatted contents note |
Table of Contents<br/><br/>Preface xix<br/><br/>Acknowledgement xxi<br/><br/>1 Introduction, History, and Applications 1<br/>John R. Grace<br/><br/>1.1 Definition and Origins 1<br/><br/>1.2 Terminology 2<br/><br/>1.3 Applications 3<br/><br/>1.4 Other Reasons for Studying Fluidized Beds 4<br/><br/>1.5 Sources of Information on Fluidization 8<br/><br/>References 8<br/><br/>Problems 9<br/><br/>2 Properties, Minimum Fluidization, and Geldart Groups 11<br/>John R. Grace<br/><br/>2.1 Introduction 11<br/><br/>2.2 Fluid Properties 11<br/><br/>2.3 Individual Particle Properties 12<br/><br/>2.4 Bulk Particle Properties 16<br/><br/>2.5 Minimum Fluidization Velocity 18<br/><br/>2.6 Geldart Powder Classification for Gas Fluidization 24<br/><br/>2.7 Voidage at Minimum Fluidization 27<br/><br/>Solved Problem 28<br/><br/>Notations 28<br/><br/>References 29<br/><br/>Problems 31<br/><br/>3 Liquid Fluidization 33<br/>Renzo Di Felice and Alberto Di Renzo<br/><br/>3.1 Introduction 33<br/><br/>3.2 Field of Existence 33<br/><br/>3.3 Overall Behaviour 35<br/><br/>3.4 Superficial Velocity–Voidage Relationship 37<br/><br/>3.5 Particle Segregation and Mixing 40<br/><br/>3.6 Layer Inversion Phenomena 41<br/><br/>3.7 Heat and Mass Transfer 46<br/><br/>3.8 Distributor Design 48<br/><br/>Solved Problems 48<br/><br/>Notations 51<br/><br/>References 52<br/><br/>Problems 53<br/><br/>4 Gas Fluidization Flow Regimes 55<br/>Xiaotao Bi<br/><br/>4.1 Onset of Fluidization 55<br/><br/>4.2 Onset of Bubbling Fluidization 55<br/><br/>4.3 Onset of Slugging Fluidization 57<br/><br/>4.4 Onset of Turbulent Fluidization 58<br/><br/>4.5 Termination of Turbulent Fluidization 62<br/><br/>4.6 Fast Fluidization and Circulating Fluidized Bed 62<br/><br/>4.7 Flow Regime Diagram for Gas–Solid Fluidized Beds 64<br/><br/>4.8 Generalized Flow Diagram for Gas–Solid Vertical Transport 65<br/><br/>4.9 Effect of Pressure and Temperature on Flow Regime Transitions 68<br/><br/>Solved Problems 70<br/><br/>Notations 71<br/><br/>References 72<br/><br/>Problems 74<br/><br/>5 Experimental Investigation of Fluidized Bed Systems 75<br/>Naoko Ellis<br/><br/>5.1 Introduction 75<br/><br/>5.2 Configuration and Design 76<br/><br/>5.3 Fluidizability and Quality of Fluidization 84<br/><br/>5.4 Instrumentation and Measurements 87<br/><br/>5.5 Operation of Fluidized Beds 93<br/><br/>5.6 Data Analysis 95<br/><br/>Solved Problem 98<br/><br/>Notations 98<br/><br/>References 100<br/><br/>Problems 104<br/><br/>6 Computational Fluid Dynamics and Its Application to Fluidization 109<br/>Tingwen Li and Yupeng Xu<br/><br/>6.1 Two-Fluid Model 110<br/><br/>6.2 Discrete Particle Method 115<br/><br/>6.3 Gas–Solid Interaction 119<br/><br/>6.4 Boundary Conditions 122<br/><br/>6.5 Example and Discussion 123<br/><br/>6.6 Conclusion and Perspective 126<br/><br/>Solved Problem 126<br/><br/>Notations 127<br/><br/>References 128<br/><br/>7 Hydrodynamics of Bubbling Fluidization 131<br/>John R. Grace<br/><br/>7.1 Introduction 131<br/><br/>7.2 Why Bubbles Form 133<br/><br/>7.3 Analogy Between Bubbles in Fluidized Beds and Bubbles in Liquids 134<br/><br/>7.4 Hydrodynamic Properties of Individual Bubbles 135<br/><br/>7.5 Bubble Interactions and Coalescence 139<br/><br/>7.6 Freely Bubbling Beds 139<br/><br/>7.7 Other Factors Influencing Bubbles in Gas-Fluidized Beds 146<br/><br/>Solved Problem 147<br/><br/>Notations 147<br/><br/>References 148<br/><br/>Problems 152<br/><br/>8 Slug Flow 153<br/>John R. Grace<br/><br/>8.1 Introduction 153<br/><br/>8.2 Types of Slug Flow 153<br/><br/>8.3 Analogy Between Slugs in Fluidized Beds and Slugs in Liquids 155<br/><br/>8.4 Experimental Identification of the Slug Flow Regime 155<br/><br/>8.5 Transition to Slug Flow 156<br/><br/>8.6 Properties of Single Slugs 156<br/><br/>8.7 Hydrodynamics of Continuous Slug Flow 158<br/><br/>8.8 Mixing of Solids and Gas in Slugging Beds 159<br/><br/>8.9 Slugging Beds as Chemical Reactors 160<br/><br/>Solved Problem 160<br/><br/>Notations 161<br/><br/>References 161<br/><br/>9 Turbulent Fluidization 163<br/>Xiaotao Bi<br/><br/>9.1 Introduction 163<br/><br/>9.2 Flow Structure 165<br/><br/>9.3 Gas and Solids Mixing 168<br/><br/>9.4 Effect of Column Diameter 172<br/><br/>9.5 Effect of Fines Content 173<br/><br/>Solved Problem 173<br/><br/>Notations 175<br/><br/>References 176<br/><br/>Problems 180<br/><br/>10 Entrainment from Bubbling and Turbulent Beds 181<br/>Farzam Fotovat<br/><br/>10.1 Introduction 181<br/><br/>10.2 Definitions 182<br/><br/>10.3 Ejection of Particles into the Freeboard 184<br/><br/>10.4 Entrainment Beyond the Transport Disengagement Height 185<br/><br/>10.5 Entrainment from Turbulent Fluidized Beds 190<br/><br/>10.6 Parameters Affecting Entrainment of Solid Particles from Fluidized Beds 191<br/><br/>10.7 Possible Means of Reducing Entrainment 195<br/><br/>Solved Problem 195<br/><br/>Notations 196<br/><br/>References 197<br/><br/>Problems 201<br/><br/>11 Standpipes and Return Systems, Separation Devices, and Feeders 203<br/>Ted M. Knowlton and Surya B. Reddy Karri<br/><br/>11.1 Standpipes and Solids Return Systems 203<br/><br/>11.2 Standpipes in Recirculating Solids Systems 212<br/><br/>11.3 Standpipes Used with Nonmechanical Solids Flow Devices 216<br/><br/>11.4 Solids Separation Devices 222<br/><br/>11.5 Solids Flow Control Devices/Feeders 230<br/><br/>Solved Problem 232<br/><br/>Notations 233<br/><br/>References 235<br/><br/>Problems 237<br/><br/>12 Circulating Fluidized Beds 239<br/>Chengxiu Wang and Jesse Zhu<br/><br/>12.1 Introduction 239<br/><br/>12.2 Basic Parameters 241<br/><br/>12.3 Axial Profiles of Solids Holdup/Voidage 243<br/><br/>12.4 Radial Profiles of Solids Distribution 246<br/><br/>12.5 The Circulating Turbulent Fluidized Bed 249<br/><br/>12.6 Micro-flow Structure 250<br/><br/>12.7 Gas and Solids Mixing 256<br/><br/>12.8 Reactor Performance of Circulating Fluidized Beds 258<br/><br/>12.9 Effect of Reactor Diameter on CFB Hydrodynamics 261<br/><br/>Notations 262<br/><br/>References 263<br/><br/>Problems 268<br/><br/>13 Operating Challenges 269<br/>Poupak Mehrani and Andrew Sowinski<br/><br/>13.1 Electrostatics 269<br/><br/>13.2 Agglomeration 273<br/><br/>13.3 Attrition 274<br/><br/>13.4 Wear 278<br/><br/>Solved Problems 280<br/><br/>Notations 286<br/><br/>References 287<br/><br/>Problem 290<br/><br/>14 Heat and Mass Transfer 291<br/>Dening Eric Jia<br/><br/>14.1 Heat Transfer in Fluidized Beds 291<br/><br/>14.2 Mass Transfer in Fluidized Beds 318<br/><br/>Solved Problem 320<br/><br/>Notations 323<br/><br/>References 325<br/><br/>Problem 329<br/><br/>15 Catalytic Fluidized Bed Reactors 333<br/>Andrés Mahecha-Botero<br/><br/>15.1 Introduction 333<br/><br/>15.2 Reactor Design Considerations 334<br/><br/>15.3 Reactor Modelling 334<br/><br/>15.4 Fluidized Bed Catalytic Reactor Models 342<br/><br/>15.5 Conclusions 356<br/><br/>Notations 357<br/><br/>References 358<br/><br/>Problems 361<br/><br/>16 Fluidized Beds for Gas–Solid Reactions 363<br/>Jaber Shabanian and Jamal Chaouki<br/><br/>16.1 Introduction 363<br/><br/>16.2 Gas–Solid Reactions for a Single Particle 364<br/><br/>16.3 Reactions of Solid Particles Alone 377<br/><br/>16.4 Conversion of Particles Bathed by Uniform Gas Composition in a Dense Gas–Solid Fluidized Bed 378<br/><br/>16.5 Conversion of Both Solids and Gas 381<br/><br/>16.6 Thermal Conversion of Solid Fuels in Fluidized Bed Reactors 386<br/><br/>16.7 Final Remarks 390<br/><br/>Solved Problems 391<br/><br/>Acknowledgments 398<br/><br/>Notations 398<br/><br/>References 401<br/><br/>Problems 403<br/><br/>17 Scale-Up of Fluidized Beds 405<br/>Naoko Ellis and Andrés Mahecha-Botero<br/><br/>17.1 Challenges of Scale 405<br/><br/>17.2 Historical Lessons 407<br/><br/>17.3 Influence of Scale on Hydrodynamics 408<br/><br/>17.4 Approaches to Scale-Up 412<br/><br/>17.5 Practical Considerations 415<br/><br/>17.6 Scale-Up and Industrial Considerations of Fluidized Bed Catalytic Reactors 419<br/><br/>Solved Problems 424<br/><br/>Notations 426<br/><br/>References 426<br/><br/>Problems 429<br/><br/>18 Baffles and Aids to Fluidization 431<br/>Yongmin Zhang<br/><br/>18.1 Industrial Motivation 431<br/><br/>18.2 Baffles in Fluidized Beds 432<br/><br/>18.3 Other Aids to Fluidization 449<br/><br/>18.4 Final Remarks 452<br/><br/>Notations 452<br/><br/>References 452<br/><br/>Problem 455<br/><br/>19 Jets in Fluidized Beds 457<br/>Cedric Briens and Jennifer McMillan<br/><br/>19.1 Introduction 457<br/><br/>19.2 Jets at Gas Distributors 457<br/><br/>19.3 Mass Transfer, Heat Transfer, and Reaction in Distributor Jets 467<br/><br/>19.4 Particle Attrition and Tribocharging at Distributor Holes 467<br/><br/>19.5 Jets Formed in Fluidized Bed Grinding 469<br/><br/>19.6 Applications 471<br/><br/>19.7 Jet Penetration 471<br/><br/>19.8 Solids Entrainment into Jets 471<br/><br/>19.9 Nozzle Design 472<br/><br/>19.10 Jet-Target Attrition 473<br/><br/>19.11 Jets Formed When Solids Are Fed into a Fluidized Bed 475<br/><br/>19.12 Jets Formed When Liquid Is Sprayed into a Gas-Fluidized Bed 477<br/><br/>19.13 Jet Penetration 478<br/><br/>Solved Problems 483<br/><br/>Notations 487<br/><br/>References 488<br/><br/>Problem 497<br/><br/>20 Downer Reactors 499<br/>Changning Wu and Yi Cheng<br/><br/>20.1 Downer Reactor: Conception and Characteristics 499<br/><br/>20.2 Hydrodynamics, Mixing, and Heat Transfer of Gas–Solid Flow in Downers 501<br/><br/>20.3 Modelling of Hydrodynamics and Reacting Flows in Downers 508<br/><br/>20.4 Design and Applications of Downer Reactors 514<br/><br/>20.5 Conclusions and Outlook 523<br/><br/>Solved Problem 523<br/><br/>Notations 525<br/><br/>References 526<br/><br/>Problems 528<br/><br/>21 Spouted (and Spout-Fluid) Beds 531<br/>Norman Epstein<br/><br/>21.1 Introduction 531<br/><br/>21.2 Hydrodynamics 532<br/><br/>21.3 Heat and Mass Transfer 538<br/><br/>21.4 Chemical Reaction 538<br/><br/>21.5 Spouting vs. Fluidization 539<br/><br/>21.6 Spout-Fluid Beds 540<br/><br/>21.7 Non-conventional Spouted Beds 543<br/><br/>21.8 Applications 546<br/><br/>21.9 Multiphase Computational Fluid Dynamics 547<br/><br/>Solved Problem 547<br/><br/>Notations 548<br/><br/>References 549<br/><br/>22 Three-Phase (Gas–Liquid–Solid) Fluidization 553<br/>Dominic Pjontek, Adam Donaldson, and Arturo Macchi<br/><br/>22.1 Introduction 553<br/><br/>22.2 Reactor Design and Scale-up 556<br/><br/>22.3 Compartmental Flow Models 558<br/><br/>22.4 Fluid Dynamics in Three-Phase Fluidized Beds 562<br/><br/>22.5 Phase Mixing, Mass Transfer, and Heat Transfer 569<br/><br/>22.6 Summary 574<br/><br/>Solved Problems 574<br/><br/>Notations 582<br/><br/>References 585<br/><br/>Problems 587<br/><br/>Index 591 |
520 ## - SUMMARY, ETC. |
Summary, etc |
A concise and clear treatment of the fundamentals of fluidization, with a view to its applications in the process and energy industries. |
545 0# - BIOGRAPHICAL OR HISTORICAL DATA |
Biographical or historical note |
About the Author<br/>John Grace is an Emeritus Professor at the University of British Columbia (Vancouver, Canada), where he has served since 1979. Prior to that he was a faculty member at McGill University (Montreal, Canada) and completed a PhD on fluidization at Cambridge University. He has published more than 590 papers, chapters and books, most of them related to the subject of the proposed book. He has chaired a number of conferences, consulted for a number of companies, and won a number of awards and honours such as the International Fluidization Award of Achievement from the Engineering Foundation, Thomas Baron Award in Fluid-Particle Systems of the AIChE, and the Particle Technology Forum Award of the AIChE.<br/><br/>Xiaotao (Tony) Bi completed his PhD at the University of British Columbia (UBC, Canada) in 1994, then worked in industry and returned to UBC in 1997 where he rose to the rank of Full Professor. He has published more than 300 papers and has supervised dozens of graduate students, mostly related to fluidization and associated multiphase systems. His research covers many areas including hydrodynamics, flow patterns and flow regimes, heat transfer, mass transfer, reactor performance testing, modeling and simulation, scaling and scale-up, commercial reactor trouble-shooting etc. covering gas-solids, liquid-solids, gas-liquid-solids bubbling, turbulent and circulating fluidized beds. He is a Fellow of the Canadian Academy of Engineering and a recent winner of the AIChE Lectureship Award in Fluidization.<br/><br/>Naoko Ellis completed a PhD on fluidization at the University of British Columbia (UBC, Canada) in 2003. As a faculty member at UBC (recently promoted to Full Professor and currently serving as Associate head for Graduate Programs), she has been actively engaged in research and supervision of graduate students on fluidization, chemical looping, biomass utilization, bio-oil upgrading, biochar, biodiesel and sustainability, publishing in each of these areas. With Professors Grace and Bi, she taught a recent graduate course on fluidization. |
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM |
Topical term or geographic name as entry element |
Fluidization. |
Authority record control number |
http://id.loc.gov/authorities/subjects/sh85049391. |
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM |
Topical term or geographic name as entry element |
Energy industries. |
Authority record control number |
http://id.loc.gov/authorities/subjects/sh85043141. |
655 #4 - INDEX TERM--GENRE/FORM |
Genre/form data or focus term |
Electronic books. |
700 1# - ADDED ENTRY--PERSONAL NAME |
Personal name |
Grace, John R. |
Authority record control number |
http://id.loc.gov/authorities/names/n78000639. |
700 1# - ADDED ENTRY--PERSONAL NAME |
Personal name |
Bi, Xiaotao. |
700 1# - ADDED ENTRY--PERSONAL NAME |
Personal name |
Ellis, Naoko. |
856 ## - ELECTRONIC LOCATION AND ACCESS |
Uniform Resource Identifier |
https://onlinelibrary.wiley.com/doi/book/10.1002/9783527699483 |
Link text |
Full text is available at Wiley Online Library Click here to view. |
942 ## - ADDED ENTRY ELEMENTS |
Source of classification or shelving scheme |
|
Item type |
EBOOK |