Topology optimization design of heterogeneous materials and structures / (Record no. 88693)

000 -LEADER
fixed length control field 06857nam a22003977a 4500
003 - CONTROL NUMBER IDENTIFIER
control field CITU
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20240919163421.0
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 240919b |||||o|||| 00| 0 eng d
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9781786305589
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9781119687535
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9781119687252
Qualifying information (electronic bk. : oBook)
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 111968725X
Qualifying information (electronic bk. : oBook)
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 1119687535
035 ## - SYSTEM CONTROL NUMBER
System control number (OCoLC)1134075446
040 ## - CATALOGING SOURCE
Original cataloging agency EBLCP
Language of cataloging eng
Description conventions rda
Transcribing agency EBLCP
Modifying agency DG1
-- RECBK
-- OCLCF
041 ## - LANGUAGE CODE
Language code of text/sound track or separate title eng
050 #4 - LIBRARY OF CONGRESS CALL NUMBER
Classification number QA611
082 04 - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 514
Edition number 23
100 1# - MAIN ENTRY--PERSONAL NAME
Preferred name for the person Da, Daicong.
245 10 - TITLE STATEMENT
Title Topology optimization design of heterogeneous materials and structures /
Statement of responsibility, etc Daicong Da.
264 #1 - PUBLICATION, DISTRIBUTION, ETC. (IMPRINT)
Place of publication, distribution, etc London :
Name of publisher, distributor, etc ISTE, Ltd. ;
Place of publication, distribution, etc Hoboken :
Name of publisher, distributor, etc John Wiley & Sons, Incorporated,
Date of publication, distribution, etc [2019]
264 #4 - PUBLICATION, DISTRIBUTION, ETC. (IMPRINT)
Date of publication, distribution, etc ©2019.
300 ## - PHYSICAL DESCRIPTION
Extent 1 online resource (172 pages)
336 ## - CONTENT TYPE
Content type term text
Content type code txt
Source rdacontent.
337 ## - MEDIA TYPE
Media type term computer
Media type code c
Source rdamedia.
338 ## - CARRIER TYPE
Carrier type term online resource
Carrier type code cr
Source rdacarrier.
504 ## - BIBLIOGRAPHY, ETC. NOTE
Bibliography, etc Includes bibliographical references and index.
505 0# - CONTENTS
Formatted contents note Table of Contents<br/><br/>Introduction ix<br/><br/>Part 1. Multiscale Topology Optimization in the Context of Non-separated Scales 1<br/><br/>Chapter 1. Size Effect Analysis in Topology Optimization for Periodic Structures Using the Classical Homogenization 3<br/><br/>1.1. The classical homogenization method 4<br/><br/>1.1.1. Localization problem 4<br/><br/>1.1.2. Definition and computation of the effective material properties 7<br/><br/>1.1.3. Numerical implementation for the local problem with PER 9<br/><br/>1.2. Topology optimization model and procedure 10<br/><br/>1.2.1. Optimization model and sensitivity number 10<br/><br/>1.2.2. Finite element meshes and relocalization scheme 12<br/><br/>1.2.3. Optimization procedure 14<br/><br/>1.3. Numerical examples 16<br/><br/>1.3.1. Doubly clamped elastic domain 17<br/><br/>1.3.2. L-shaped structure 19<br/><br/>1.3.3. MBB beam 24<br/><br/>1.4. Concluding remarks 25<br/><br/>Chapter 2. Multiscale Topology Optimization of Periodic Structures Taking into Account Strain Gradient 29<br/><br/>2.1. Non-local filter-based homogenization for non-separated scales 30<br/><br/>2.1.1. Definition of local and mesoscopic fields through the filter 30<br/><br/>2.1.2. Microscopic unit cell calculations 33<br/><br/>2.1.3. Mesoscopic structure calculations 39<br/><br/>2.2. Topology optimization procedure 41<br/><br/>2.2.1. Model definition and sensitivity numbers 41<br/><br/>2.2.2. Overall optimization procedure 42<br/><br/>2.3. Validation of the non-local homogenization approach 43<br/><br/>2.4. Numerical examples 45<br/><br/>2.4.1. Cantilever beam with a concentrated load 46<br/><br/>2.4.2. Four-point bending lattice structure 52<br/><br/>2.5. Concluding remarks 55<br/><br/>Chapter 3. Topology Optimization of Meso-structures with Fixed Periodic Microstructures 57<br/><br/>3.1. Optimization model and procedure 58<br/><br/>3.2. Numerical examples 61<br/><br/>3.2.1. A double-clamped beam 61<br/><br/>3.2.2. A cantilever beam 64<br/><br/>3.3. Concluding remarks 66<br/><br/>Part 2. Topology Optimization for Maximizing the Fracture Resistance 67<br/><br/>Chapter 4. Topology Optimization for Optimal Fracture Resistance of Quasi-brittle Composites 69<br/><br/>4.1. Phase field modeling of crack propagation 71<br/><br/>4.1.1. Phase field approximation of cracks 71<br/><br/>4.1.2. Thermodynamics of the phase field crack evolution 72<br/><br/>4.1.3. Weak forms of displacement and phase field problems 75<br/><br/>4.1.4. Finite element discretization 76<br/><br/>4.2. Topology optimization model for fracture resistance 78<br/><br/>4.2.1. Model definitions 78<br/><br/>4.2.2. Sensitivity analysis 80<br/><br/>4.2.3. Extended BESO method 85<br/><br/>4.3. Numerical examples 87<br/><br/>4.3.1. Design of a 2D reinforced plate with one pre-existing crack notch 88<br/><br/>4.3.2. Design of a 2D reinforced plate with two pre-existing crack notches 93<br/><br/>4.3.3. Design of a 2D reinforced plate with multiple pre-existing cracks 96<br/><br/>4.3.4. Design of a 3D reinforced plate with a single pre-existing crack notch surface 98<br/><br/>4.4. Concluding remarks 101<br/><br/>Chapter 5. Topology Optimization for Optimal Fracture Resistance Taking into Account Interfacial Damage 103<br/><br/>5.1. Phase field modeling of bulk crack and cohesive interfaces 104<br/><br/>5.1.1. Regularized representation of a discontinuous field 104<br/><br/>5.1.2. Energy functional 106<br/><br/>5.1.3. Displacement and phase field problems 108<br/><br/>5.1.4. Finite element discretization and numerical implementation 111<br/><br/>5.2. Topology optimization method 114<br/><br/>5.2.1. Model definitions 114<br/><br/>5.2.2. Sensitivity analysis 116<br/><br/>5.3. Numerical examples 119<br/><br/>5.3.1. Design of a plate with one initial crack under traction 120<br/><br/>5.3.2. Design of a plate without initial cracks for traction loads 123<br/><br/>5.3.3. Design of a square plate without initial cracks in tensile loading 125<br/><br/>5.3.4. Design of a plate with a single initial crack under three-point bending 128<br/><br/>5.3.5. Design of a plate containing multiple inclusions 130<br/><br/>5.4. Concluding remarks 133<br/><br/>Chapter 6. Topology Optimization for Maximizing the Fracture Resistance of Periodic Composites 135<br/><br/>6.1. Topology optimization model 136<br/><br/>6.2. Numerical examples 138<br/><br/>6.2.1. Design of a periodic composite under three-point bending 138<br/><br/>6.2.2. Design of a periodic composite under non-symmetric three-point bending 146<br/><br/>6.3. Concluding remarks 151<br/><br/>Conclusion 153<br/><br/>References 157<br/><br/>Index 173
520 ## - SUMMARY, ETC.
Summary, etc This book pursues optimal design from the perspective of mechanical properties and resistance to failure caused by cracks and fatigue. The book abandons the scale separation hypothesis and takes up phase-field modeling, which is at the cutting edge of research and is of high industrial and practical relevance. Part 1 starts by testing the limits of the homogenization-based approach when the size of the representative volume element is non-negligible compared to the structure. The book then introduces a non-local homogenization scheme to take into account the strain gradient effects. Using a phase field method, Part 2 offers three significant contributions concerning optimal placement of the inclusion phases. Respectively, these contributions take into account fractures in quasi-brittle materials, interface cracks and periodic composites. The topology optimization proposed has significantly increased the fracture resistance of the composites studied.
545 0# - BIOGRAPHICAL OR HISTORICAL DATA
Biographical or historical note About the Author<br/>Daicong Da is a research associate in the Mechanical Engineering department at the University of Wisconsin-Madison, USA. His research interests cover structural topology optimization and its applications.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name as entry element Topology.
Authority record control number http://id.loc.gov/authorities/subjects/sh85136089.
655 #4 - INDEX TERM--GENRE/FORM
Genre/form data or focus term Electronic books.
776 08 - ADDITIONAL PHYSICAL FORM ENTRY
Display text Print version:
Main entry heading Da, Daicong
Title Topology Optimization Design of Heterogeneous Materials and Structures
Place, publisher, and date of publication Newark : John Wiley & Sons, Incorporated,c2020
International Standard Book Number 9781786305589.
856 40 - ELECTRONIC LOCATION AND ACCESS
Uniform Resource Identifier https://onlinelibrary.wiley.com/doi/book/10.1002/9781119687252
Link text Full text available at Wiley Online Library Click here to view
942 ## - ADDED ENTRY ELEMENTS
Source of classification or shelving scheme
Item type EBOOK
Holdings
Withdrawn status Lost status Source of classification or shelving scheme Damaged status Not for loan Permanent Location Current Location Date acquired Source of acquisition Full call number Date last seen Price effective from Item type
          COLLEGE LIBRARY COLLEGE LIBRARY 2024-09-19 Megatexts Phil. Inc. 514 D11 2019 2024-09-19 2024-09-19 EBOOK