000 -LEADER |
fixed length control field |
14115nam a22004337a 4500 |
005 - DATE AND TIME OF LATEST TRANSACTION |
control field |
20240918092115.0 |
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION |
fixed length control field |
240918b |||||o|||| 00| 0 eng d |
020 ## - INTERNATIONAL STANDARD BOOK NUMBER |
International Standard Book Number |
9781119743514 |
Qualifying information |
paperback |
020 ## - INTERNATIONAL STANDARD BOOK NUMBER |
International Standard Book Number |
9781119815099 |
Qualifying information |
electronic book |
020 ## - INTERNATIONAL STANDARD BOOK NUMBER |
International Standard Book Number |
1119815096 |
Qualifying information |
electronic book |
020 ## - INTERNATIONAL STANDARD BOOK NUMBER |
International Standard Book Number |
9781119743521 |
Qualifying information |
electronic book |
020 ## - INTERNATIONAL STANDARD BOOK NUMBER |
International Standard Book Number |
1119743524 |
Qualifying information |
electronic book |
020 ## - INTERNATIONAL STANDARD BOOK NUMBER |
International Standard Book Number |
1119743532 |
Qualifying information |
electronic publication |
020 ## - INTERNATIONAL STANDARD BOOK NUMBER |
International Standard Book Number |
9781119743538 |
Qualifying information |
(electronic bk.) |
035 ## - SYSTEM CONTROL NUMBER |
System control number |
(OCoLC)1337031911 |
040 ## - CATALOGING SOURCE |
Original cataloging agency |
DLC |
Language of cataloging |
eng |
Description conventions |
rda |
Transcribing agency |
DLC |
Modifying agency |
OCLCF |
-- |
YDX |
-- |
DG1 |
-- |
N$T |
041 ## - LANGUAGE CODE |
Language code of text/sound track or separate title |
eng |
042 ## - AUTHENTICATION CODE |
Authentication code |
pcc |
050 04 - LIBRARY OF CONGRESS CALL NUMBER |
Classification number |
TH6021 |
Item number |
.M56 2023 |
082 00 - DEWEY DECIMAL CLASSIFICATION NUMBER |
Classification number |
696 |
Edition number |
23/eng/20220722 |
100 1# - MAIN ENTRY--PERSONAL NAME |
Preferred name for the person |
Mirzaei, Parham A., |
Authority record control number |
https://id.loc.gov/authorities/names/no2022072589 |
Relator term |
author. |
245 10 - TITLE STATEMENT |
Title |
Computational fluid dynamics and energy modelling in buildings : |
Remainder of title |
fundamentals and applications / |
Statement of responsibility, etc |
Parham A. Mirzaei. |
264 #1 - PUBLICATION, DISTRIBUTION, ETC. (IMPRINT) |
Place of publication, distribution, etc |
Hoboken, NJ : |
Name of publisher, distributor, etc |
Wiley-Blackwell, |
Date of publication, distribution, etc |
2023. |
264 #4 - PUBLICATION, DISTRIBUTION, ETC. (IMPRINT) |
Date of publication, distribution, etc |
©2023. |
300 ## - PHYSICAL DESCRIPTION |
Extent |
1 online resource (xvii, 606 pages) : |
Other physical details |
illustrations (chiefly color) |
336 ## - CONTENT TYPE |
Content type term |
text |
Content type code |
txt |
Source |
rdacontent. |
337 ## - MEDIA TYPE |
Media type term |
computer |
Media type code |
c |
Source |
rdamedia. |
338 ## - CARRIER TYPE |
Carrier type term |
online resource |
Carrier type code |
cr |
Source |
rdacarrier. |
500 ## - GENERAL NOTE |
General note |
Includes index. |
504 ## - BIBLIOGRAPHY, ETC. NOTE |
Bibliography, etc |
Includes bibliographical references and index. |
505 0# - CONTENTS |
Formatted contents note |
Contents<br/>Preface xiii<br/>1 An Overview of Heat and Mass Transport in Buildings 1<br/>1.1 Introduction 1<br/>1.2 Heat and Mass Transport in Traditional Buildings 2<br/>1.3 Heat and Mass Transports in Modern Buildings 8<br/>1.4 Modelling of Heat and Mass Transport in Buildings 15<br/>1.4.1 Modelling Objectives 16<br/>1.5 Modelling Approaches 17<br/>1.5.1 Observational Methods 17<br/>1.5.2 Mathematical Methods 18<br/>1.5.2.1 Spatial Scale of Modelling 19<br/>1.5.2.2 Temporal Scale of Modelling 22<br/>References 22<br/>2 An Overview on Fundamentals of Fluid Mechanics in Buildings 25<br/>2 An Overview of Fluid 25<br/>2.1 Definition of Fluid 25<br/>2.1.1 System of Units 25<br/>2.2 Properties of Fluid 26<br/>2.2.1 Density 26<br/>2.2.2 Specific Weight 26<br/>2.2.3 Viscosity 27<br/>2.3 Pressure and State of Fluid 29<br/>2.3.1 Definition 29<br/>2.3.2 Static Pressure 29<br/>2.3.3 Hydrostatic Pressure 31<br/>2.3.4 Buoyancy 35<br/>2.3.5 Vapour Pressure and Boiling 37<br/>2.3.6 Pressure Measurement Devices 38<br/>2.3.7 Gas Law 40<br/>2.3.8 Bernoulli Equation 41<br/>2.3.9 Dynamic Pressure 46<br/>2.4 Fluid in Motion 50<br/>2.4.1 Steady and Unsteady Flows 50<br/>2.4.2 Laminar and Turbulent Flows 51<br/>2.4.3 Multiple-Dimensional Flow 52<br/>2.5 Governing Equation of Fluids 52<br/>2.5.1 Reynolds Transport Theorem 52<br/>2.5.2 Continuity Equation 57<br/>2.5.3 Momentum Equation 59<br/>2.5.4 Energy Equation 60<br/>2.6 Differential Form of Fluid Flow 62<br/>2.6.1 Fluid Element Kinematic 62<br/>2.6.2 Differential Form of Continuity Equation 65<br/>2.6.3 Differential Form of Linear Momentum Equation 66<br/>2.6.4 Euler’s Equation of Motion 69<br/>2.6.5 Navier–Stokes Equations 69<br/>2.7 Dimensionless Analysis 75<br/>2.7.1 Flow Similarities 75<br/>2.7.2 Buckingham π-Theorem 76<br/>2.8 Internal Flow 79<br/>2.8.1 Laminar Internal Flow 80<br/>2.8.2 Turbulent Internal Flow 82<br/>2.8.3 Pressure Drop in Conduit 83<br/>2.9 External Flow 86<br/>2.9.1 Drag and Lift 86<br/>2.9.2 Uniform Flow on a Flat Plate 90<br/>2.9.3 Boundary Layer Structure 90<br/>References 92<br/>3 Applications of Fluid Mechanics in Buildings 93<br/>3 Applications of Fluid Mechanics in Buildings 93<br/>3.1 Atmospheric Boundary Layer 93<br/>3.2 Wind Profile and Directions 93<br/>3.3 Building Aerodynamics 97<br/>3.3.1 Cp and Similarity in Buildings 98<br/>3.3.2 Building Openings 105<br/>3.3.3 Wind-Driven Ventilation 107<br/>3.3.4 Buoyancy-Driven Ventilation 111<br/>3.4 Turbulent Jet and Plume 115<br/>3.4.1 Jet Structure 117<br/>3.4.2 Jet and Plume in Ventilation 118<br/>3.5 Wall Effect 121<br/>3.5.1 Inner Layer 121<br/>3.5.2 Viscous Sublayer 122<br/>3.5.3 Log-Law Layer 122<br/>3.5.4 Buffer Layer 123<br/>3.5.5 Outer Layer 123<br/>3.6 Piping and Ducting in Buildings 125<br/>vi Contents<br/>3.6.1 Major Losses 125<br/>3.6.2 Minor Losses 125<br/>3.6.3 Piping System 128<br/>3.6.4 Parallel and Series Piping Systems 132<br/>3.7 Fan and Pump in Buildings 140<br/>3.7.1 Dimensionless Analysis 142<br/>3.7.2 System Characteristics and Pumps 145<br/>3.7.3 Parallel and Series Pumps 149<br/>References 155<br/>4 An Overview on Fundamentals of Thermodynamics in Buildings 157<br/>4 An Overview of Thermodynamics 157<br/>4.1 Saturation Temperature 157<br/>4.2 First Law of Thermodynamics 162<br/>4.2.1 Enthalpy 166<br/>4.2.2 Specific Heats 167<br/>4.2.3 First Law of Thermodynamics for a Control Volume (Open System) 169<br/>4.2.4 Steady-State Steady-Flow (SSSF) Process 173<br/>4.2.5 Uniform-State Uniform-Flow (USUF) Process 175<br/>4.3 Second Law of Thermodynamics and Entropy 177<br/>4.4 Mixture of Ideal Gases 178<br/>4.4.1 Mixture of Air and Vapour 180<br/>4.4.2 Saturated Air, Relative Humidity, and Humidity Ratio 180<br/>4.4.3 Dew Point, Dry-Bulb, and Wet-Bulb 182<br/>4.4.4 Psychrometric Chart 182<br/>4.5 Moisture Transport 184<br/>4.5.1 Mixing 185<br/>4.5.2 Mass Diffusion Mechanism 185<br/>4.5.3 Mass Convection 186<br/>4.5.4 Conservation of Mass 188<br/>References 189<br/>5 Applications of Thermodynamics in Buildings 191<br/>5 Introduction 191<br/>5.1 Human Thermal Comfort 191<br/>5.2 Thermal Comfort Measures in Building 193<br/>5.3 Thermodynamic Processes in Air-Conditioning Systems 193<br/>5.3.1 Adiabatic Saturation 195<br/>5.3.2 Cooling and Heating 198<br/>5.3.3 Heating and Humidification 200<br/>5.3.4 Cooling and Dehumidification 201<br/>5.3.5 Adiabatic Humidification 203<br/>5.3.6 Adiabatic Mixing 204<br/>5.4 Moist Air Transport in Buildings 205<br/>5.4.1 Mass Transport of Moist Air 205<br/>Contents vii<br/>5.4.3 Pores 209<br/>5.4.4 Air Transport Through Pores 210<br/>5.4.5 Vapour Transport Through Pores 211<br/>5.4.6 Mass Transport Through Openings 214<br/>References 215<br/>6 An Overview on Fundamentals of Heat Transfer in Buildings 217<br/>6 An Overview of Heat Transfer 217<br/>6.1 Conduction 217<br/>6.1.1 Heat Diffusion Equation 220<br/>6.2 Convection 223<br/>6.2.1 Thermal Boundary Layer 223<br/>6.2.2 Local and Average Convection Coefficients 224<br/>6.2.3 Convection in External Flows 226<br/>6.2.4 Convection in Internal Flow 231<br/>6.2.4.1 Thermally Fully Developed Condition 233<br/>6.2.4.2 Mean Temperature at Internal Flows 235<br/>6.2.4.3 Nusselt Number of Internal Flows 238<br/>6.2.5 Free Convection 241<br/>6.2.5.1 Empirical Correlations for Vertical Surfaces 244<br/>6.2.5.2 Empirical Correlations for Horizontal and Inclined Surfaces 245<br/>6.2.5.3 Empirical Correlations for Channel Flows and Cavities 248<br/>6.3 Radiation 248<br/>6.3.1 Total Emission, Irradiation, and Radiosity 251<br/>6.3.2 Black and Grey Bodies 253<br/>6.3.3 View Factor 254<br/>6.3.4 Radiation Exchange at Surfaces 260<br/>6.3.5 Radiation Network 261<br/>References 265<br/>7 Applications of Heat Transfer in Buildings 267<br/>7 Introduction 267<br/>7.1 Conduction in Walls 267<br/>7.2 Thermal Resistance Analogy 270<br/>7.3 Walls with Heat Generation 277<br/>7.4 Convective Heat Transfer Coefficient of Exterior Walls 278<br/>7.4.1 Wind on Buildings’ Exterior Surfaces 278<br/>7.4.2 Simple-Combined Correlation 279<br/>7.4.3 TARP Correlation 280<br/>7.4.4 MoWiTT Correlation 281<br/>7.4.5 DOE-2 Correlation 282<br/>7.4.6 Adaptive Correlations 282<br/>7.5 Convection on Interior Walls 287<br/>viii Contents<br/>7.5.5 Fisher–Pedersen Correlation 289<br/>7.5.6 Goldstein–Novoselac Correlation 289<br/>7.5.7 Fohanno–Polidori Correlation 290<br/>7.6 Radiations 295<br/>7.6.1 Solar Radiation on Building Surfaces 296<br/>7.6.2 ASHRAE Clear Sky Model 297<br/>7.6.3 ASHRAE Revised Clear Sky Model 297<br/>7.6.4 Zhang–Huang Model 300<br/>7.6.5 Diffuse Solar Radiation Model 300<br/>7.7 Long-wave Radiation on Building Surfaces 306<br/>7.7.1 View Factors of Surrounding Environment 307<br/>7.7.2 Emissivity of Surrounding Environment 308<br/>7.7.3 Bulk Temperature of Surrounding Environment 308<br/>References 311<br/>8 Fundamental of Energy Modelling in Buildings 313<br/>8 Introduction 313<br/>8.1 Definition of a Zone 313<br/>8.2 Conservation Law in Buildings 315<br/>8.3 Governing Equations at Zones 316<br/>8.4 Energy Balance Equation 316<br/>8.5 Nodal Analogy of the Governing Equation 318<br/>8.5.1 Convective Heat Fluxes 320<br/>8.5.2 Advective Heat Fluxes 320<br/>8.5.3 Heat Generation Fluxes 321<br/>8.5.4 Short-wave Radiative Fluxes in Zone 321<br/>8.5.5 Long-wave Radiative Fluxes in Zone 323<br/>8.5.6 Conduction Heat Fluxes Through Solid Surfaces 330<br/>8.5.7 Short-wave Radiative Fluxes on Exterior Surfaces 331<br/>8.5.8 Long-wave Radiative Fluxes on Exterior Surfaces 331<br/>8.5.8.1 Surface to Surface Long-wave Radiative Fluxes 331<br/>8.5.8.2 Surface to Environment Long-wave Radiative Fluxes 333<br/>8.5.8.3 Linearization of Long-wave Radiative fluxes 335<br/>8.5.9 Thermal Mass 336<br/>8.5.9.1 Thermal Mass in Solid Surfaces 336<br/>8.5.9.2 Multi-layer Walls 339<br/>8.5.9.3 Thermal Mass in Furniture 341<br/>8.6 Walls, Windows, and Thermal Bridges 343<br/>8.7 Mass Balance Equation 348<br/>8.7.1 Airflow Network Model 350<br/>8.7.2 Mass Flow Resistance 352<br/>Contents ix<br/>8.7.3 Infiltration Mass Flow 356<br/>8.7.4 Design Flow Rate Model 356<br/>8.7.5 Effective Leakage Area Model 357<br/>8.7.6 Flow Coefficient Model 357<br/>8.7.7 Moist Air 360<br/>References 361<br/>9 Dynamic Energy Modelling in Buildings 363<br/>9 Physics of an Energy Balance Problem in Buildings 363<br/>9.1 Mathematical Representation of Buildings with Integrated Nodal System 366<br/>9.2 Numerical Solution Method for Nodal System 370<br/>9.2.1 Zone Equations 370<br/>9.2.2 Solid Material Equations 371<br/>9.3 Inputs 381<br/>9.3.1 User-inputs 381<br/>9.3.2 Non-time Variant Inputs 382<br/>9.3.3 Time-Variant Inputs 382<br/>9.3.3.1 HVAC System 383<br/>9.3.3.2 Internal Load Model 383<br/>9.3.3.3 Climatic Input 388<br/>9.4 Solution Strategies 392<br/>9.4.1 Integrated Solution 393<br/>9.4.2 Coupled Solution 399<br/>9.4.3 Nodes Connectivity 406<br/>9.5 Temporal Variation of Parameters 406<br/>9.6 Linearization of the Radiation 409<br/>9.7 Mass Imbalance 410<br/>References 412<br/>10 Fundamental of Computational Fluid Dynamics – A Finite<br/>Volume Approach 413<br/>10 What Is CFD 413<br/>10.1 Steps in CFD 413<br/>10.1.1 Preprocessing 414<br/>Understanding the Physics of a Problem 414<br/>Geometry and Domain Creation 414<br/>Mesh Generation 414<br/>Assigning Boundary and Initial Conditions 414<br/>Definition of Solid and Fluid Materials’ Properties 415<br/>10.1.2 Solution 415<br/>10.1.3 Post-processing 415<br/>10.2 Classification of Conservation Equations 415<br/>10.3 Difference of Finite Difference and Finite Volume 418<br/>10.4 Integral Form of the Conservation Equations 418<br/>10.5 Grid (Mesh) 419<br/>x Contents<br/>10.5.1.1 Skewness 423<br/>10.5.1.2 Smoothness 425<br/>10.5.1.3 Aspect Ratio 425<br/>10.6 Diffusion Equation 429<br/>10.7 Boundary Treatment 431<br/>10.7.1 Neumann Boundary Type I 435<br/>10.7.2 Neumann Boundary Type II 436<br/>10.8 Expansion to Higher Dimensions 439<br/>10.9 Discretization Methods 446<br/>10.10 Steady-State Diffusion–Convection Equation 449<br/>10.11 Other Approximation Methods 456<br/>10.12 Scheme Evaluation 458<br/>10.12.1 Conservativeness 458<br/>10.12.2 Boundedness 459<br/>10.12.3 Transportiveness 460<br/>10.13 Common Schemes 460<br/>10.13.1 Central Difference 461<br/>10.13.2 First-Order Upwind 461<br/>10.13.3 Second-Order Upwind 465<br/>10.13.4 Power Law 469<br/>10.13.5 Hybrid 469<br/>10.13.6 QUICK 470<br/>10.14 Unsteady Diffusion Equation 475<br/>10.14.1 Explicit Scheme 476<br/>10.14.2 Implicit Scheme 480<br/>10.15 Unsteady Diffusion–Convection Equation 484<br/>10.16 Pressure–Velocity Coupling 484<br/>References 488<br/>11 Solvers and Solution Analysis 489<br/>11 Introduction 489<br/>11.1 Solvers of Algebraic Equation Systems 489<br/>11.2 Direct Method 489<br/>11.2.1 Cramer’s Rule 490<br/>11.2.2 Gaussian Elimination 491<br/>11.2.3 1D TDMA 493<br/>11.3 Iterative Method 496<br/>11.3.1 Jacobi 497<br/>11.3.2 Gauss–Seidel 499<br/>11.3.3 Higher-order TDMA 500<br/>11.4 Solution Analysis 502<br/>11.4.1 Consistency 503<br/>11.4.2 Stability 504<br/>11.4.3 Grid Convergence 504<br/>Contents xi<br/>11.4.5 Initial Guess 507<br/>11.4.6 Under-Relaxation 508<br/>11.5 Physical Uncertainty 509<br/>11.6 Numerical Errors 510<br/>11.6.1 Roundoff Error 511<br/>11.6.2 Truncation Error 512<br/>11.6.3 Iterative Convergence Error 513<br/>11.7 Verification and Validation 513<br/>11.8 Measures to Minimize Errors 517<br/>11.8.1 Simulation Resource Assessment 518<br/>11.8.2 Geometry Simplification 519<br/>11.8.3 Grid Sensitivity Analysis 520<br/>11.8.4 Iterative Convergence Control 523<br/>11.8.5 Comparison with Experimental Benchmarks 525<br/>11.8.6 Best Practice 531<br/>References 532<br/>12 Application of CFD in Buildings and Built Environment 533<br/>12.1 CFD Models in Built Environment 533<br/>12.1.1 Spatial Scale 533<br/>12.1.2 Temporal Variation 533<br/>12.2 Inputs to CFD Models 535<br/>12.2.1 Boundary Conditions 536<br/>12.2.1.1 Enclosed Spaces 536<br/>12.2.1.2 Microclimates 537<br/>12.3 Practical Examples 539<br/>12.3.1 Conduction in Solid Materials 539<br/>12.3.2 Wall Treatment of Boundary Layer 547<br/>12.3.3 Airflow in Microclimate 556<br/>12.3.4 Convective Heat Transfer Coefficient 576<br/>References 588<br/>Index 589 |
520 ## - SUMMARY, ETC. |
Summary, etc |
"This book will explain how heat and mass transport in buildings can be modelled using commercial and educational tools, with a focus on helping those who want to use those tools to understand and predict the performance of buildings, but who may not be experts in CFD. The fundamentals of modelling will be fully covered and then extended to show how those models can be used to simulate the behaviour of buildings. The aim is to ensure the reader understands the essentials of modelling and can use the existing tools effectively and knowledgably. Modelling and simulation involve many assumptions and simplifications, so the book covers these topics fully, ensuring the reader understands and can justify those assumptions and simplifications. In addition, it addresses uncertainties in the selection of possible options to ensure the reader can get the most from existing heat and mass transport modelling tools."-- |
Assigning source |
Provided by publisher. |
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM |
Topical term or geographic name as entry element |
Buildings |
General subdivision |
Environmental engineering. |
Authority record control number |
https://id.loc.gov/authorities/subjects/sh85017778. |
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM |
Topical term or geographic name as entry element |
Computational fluid dynamics. |
Authority record control number |
https://id.loc.gov/authorities/subjects/sh2007008173. |
655 #4 - INDEX TERM--GENRE/FORM |
Genre/form data or focus term |
Electronic books. |
776 08 - ADDITIONAL PHYSICAL FORM ENTRY |
Display text |
Print version: |
Main entry heading |
Mirzaei, Parham A. |
Title |
Computational fluid dynamics and energy modelling in buildings |
Place, publisher, and date of publication |
Hoboken, NJ : Wiley-Blackwell, 2022 |
International Standard Book Number |
9781119743514 |
Record control number |
(DLC) 2022026337. |
856 40 - ELECTRONIC LOCATION AND ACCESS |
Uniform Resource Identifier |
https://onlinelibrary.wiley.com/doi/book/10.1002/9781119815099 |
Link text |
Full text available at Wiley Online Library Click here to view |
942 ## - ADDED ENTRY ELEMENTS |
Source of classification or shelving scheme |
|
Item type |
EBOOK |