Radio science techniques for deep space exploration / (Record no. 88465)

000 -LEADER
fixed length control field 13279cam a2200553 i 4500
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20240911163347.0
006 - FIXED-LENGTH DATA ELEMENTS--ADDITIONAL MATERIAL CHARACTERISTICS--GENERAL INFORMATION
fixed length control field m o d
007 - PHYSICAL DESCRIPTION FIXED FIELD--GENERAL INFORMATION
fixed length control field cr |||||||||||
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 240911b ||||| |||| 00| 0 eng d
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9781119734147
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9781119734178
Qualifying information electronic book
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 1119734177
Qualifying information electronic book
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9781119734154
Qualifying information electronic book
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 1119734150
Qualifying information electronic book
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 1119734169
Qualifying information electronic book
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9781119734161
Qualifying information (electronic bk.)
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
Cancelled/invalid ISBN 9781119734147
Qualifying information hardcover
024 7# - OTHER STANDARD IDENTIFIER
Standard number or code 10.1002/9781119734178
Source of number or code doi
035 ## - SYSTEM CONTROL NUMBER
System control number (OCoLC)1285369186
Canceled/invalid control number (OCoLC)1285370168
037 ## - SOURCE OF ACQUISITION
Stock number 9781119734147
Source of stock number/acquisition O'Reilly Media
037 ## - SOURCE OF ACQUISITION
Stock number 9770850
Source of stock number/acquisition IEEE
040 ## - CATALOGING SOURCE
Original cataloging agency DLC
Language of cataloging eng
Description conventions rda
Transcribing agency DLC
Modifying agency OCLCF
-- OCLCO
-- YDX
-- ORMDA
-- OCLCO
-- DG1
-- YDX
-- OCLCO
-- IEEEE
-- N$T
041 ## - LANGUAGE CODE
Language code of text/sound track or separate title eng
042 ## - AUTHENTICATION CODE
Authentication code pcc
043 ## - GEOGRAPHIC AREA CODE
Geographic area code zs-----
050 04 - LIBRARY OF CONGRESS CALL NUMBER
Classification number TL4030
Item number .A86 2022
082 00 - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 621.3848
Edition number 23/eng/20211103
100 1# - MAIN ENTRY--PERSONAL NAME
Preferred name for the person Asmar, Sami W.,
Authority record control number http://id.loc.gov/authorities/names/n2021060004
Relator term author.
245 10 - TITLE STATEMENT
Title Radio science techniques for deep space exploration /
Statement of responsibility, etc Sami W. Asmar, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California.
264 #1 - PUBLICATION, DISTRIBUTION, ETC. (IMPRINT)
Place of publication, distribution, etc Hoboken, NJ :
Name of publisher, distributor, etc John Wiley & Sons,
Date of publication, distribution, etc 2022.
264 #4 - PUBLICATION, DISTRIBUTION, ETC. (IMPRINT)
Date of publication, distribution, etc ©2022.
300 ## - PHYSICAL DESCRIPTION
Extent 1 online resource :
Other physical details color illustrations.
336 ## - CONTENT TYPE
Content type term text
Content type code txt
Source rdacontent.
337 ## - MEDIA TYPE
Media type term computer
Media type code c
Source rdamedia.
338 ## - CARRIER TYPE
Carrier type term online resource
Carrier type code cr
Source rdacarrier.
490 1# - SERIES STATEMENT
Series statement Deep space communications and navigation series.
504 ## - BIBLIOGRAPHY, ETC. NOTE
Bibliography, etc Includes bibliographical references and index.
505 0# - CONTENTS
Formatted contents note Table of Contents<br/><br/>Foreword xi<br/><br/>Preface xiii<br/><br/>Acknowledgments xv<br/><br/>Author and Contributors xvii<br/><br/>1 Investigations and Techniques 1<br/><br/>1.0 Introduction 1<br/><br/>1.1 Historical Background 2<br/><br/>1.1.1 The Field of Radio Science 3<br/><br/>1.2 Fundamental Concepts 5<br/><br/>1.2.1 Categories of RS Investigations 10<br/><br/>1.2.2 Related Fields 12<br/><br/>1.3 Historical Development 14<br/><br/>1.4 Overview of the Radio Science Instrumentation System 18<br/><br/>1.4.1 Flight System 23<br/><br/>1.4.2 Ground System 24<br/><br/>1.4.3 Other Ground Stations 26<br/><br/>1.5 Noise, Error Sources, and Calibrations 26<br/><br/>1.6 Experiment Implementation, Data Archiving, and Critical Mission Support 29<br/><br/>1.7 Radio Science at Home 30<br/><br/>1.8 Future Directions 32<br/><br/>1.9 Summary and Remaining Chapters 32<br/><br/>Appendix 1A Selected Accomplishments and Planned Observations in Spacecraft Radio Science 35<br/><br/>1A.1 Selected Accomplishments in Radio Science 35<br/><br/>1A.2 Planned Observations in the Near-Term 36<br/><br/>1A.3 Planned Observations in the Long Term 37<br/><br/>2 Planetary Atmospheres, Rings, and Surfaces 39<br/><br/>2.1 Overview of Radio Occultations 39<br/><br/>2.2 Neutral Atmospheres 45<br/><br/>2.2.1 Abel Inversion 48<br/><br/>2.3 Ionospheres 52<br/><br/>2.4 Rings 53<br/><br/>2.4.1 Ring Occultation Observables 55<br/><br/>2.4.2 Ring Occultation Analysis 56<br/><br/>2.4.3 Ring Diffraction Correction 60<br/><br/>2.4.4 Data Decimation and Profile Resolution 61<br/><br/>2.4.5 Signal-to-noise Ratio-resolution Tradeoff 61<br/><br/>2.5 Surface Scattering 64<br/><br/>3 Gravity Science and Planetary Interiors 69<br/><br/>3.1 Overview 69<br/><br/>3.2 Gravity Observables and Formulations 74<br/><br/>3.2.1 Alternative Basis and Methods 75<br/><br/>3.2.2 Tidal Forces and Time Variable Gravity 76<br/><br/>3.2.3 Covariance Analysis 81<br/><br/>3.3 Earth and Moon Gravity Measurements and the Development of Crosslinks 83<br/><br/>3.4 Shape and Topography Data for Interpretation of Gravity Measurements 87<br/><br/>3.4.1 Imagery 92<br/><br/>3.4.2 Altimetry 93<br/><br/>3.4.3 Space-based Radar 94<br/><br/>3.4.4 Radio Occultations 94<br/><br/>3.4.5 Ground-based Radar 94<br/><br/>3.4.6 Examples of Results of Gravity–Topography Analysis 94<br/><br/>3.5 Application to Solar System Bodies 95<br/><br/>3.5.1 Moon 96<br/><br/>3.5.2 Mercury 96<br/><br/>3.5.3 Venus 97<br/><br/>3.5.4 Mars 97<br/><br/>3.5.5 Jupiter 99<br/><br/>3.5.6 Saturn 102<br/><br/>3.5.7 Uranus 103<br/><br/>3.5.8 Neptune 104<br/><br/>3.5.9 Pluto 104<br/><br/>3.5.10 Asteroids and Comets 104<br/><br/>3.5.11 Pioneer and Earth Flyby Anomalies 105<br/><br/>3.6 A User’s Guide 106<br/><br/>3.6.1 Calculation of Observables and Partials 108<br/><br/>3.6.2 Estimation Filter 109<br/><br/>3.6.3 Solution Analysis 109<br/><br/>Appendix 3A Planetary Geodesy 111<br/><br/>3A.1 Planetary Geodesy: Gravitational Potentials and Fields 111<br/><br/>3A.2 Gravity Determination Technique 114<br/><br/>3A.3 Dynamical Integration 114<br/><br/>3A.4 Processing of Observations 116<br/><br/>3A.5 Filtering of Observations 117<br/><br/>4 Solar and Fundamental Physics 123<br/><br/>4.1 Principles of Heliospheric Observations 123<br/><br/>4.2 Inner Heliospheric Electron Density 126<br/><br/>4.3 Density Power Spectrum 127<br/><br/>4.4 Intermittency, Nonstationarity, and Events 127<br/><br/>4.5 Faraday Rotation 128<br/><br/>4.6 Spaced-receiver Measurements 128<br/><br/>4.7 Space-time Localization of Plasma Irregularities 129<br/><br/>4.8 Utility for Telecommunications Engineering 130<br/><br/>4.9 Precision Tests of Relativistic Gravity 131<br/><br/>4.10 Scientific Goals and Objectives 133<br/><br/>4.10.1 Determine γ to an Accuracy of 2 × 10−6 134<br/><br/>4.10.2 Determine β to an Accuracy of ~3 × 10−5 135<br/><br/>4.10.3 Determine η to an Accuracy of at Least 4.4 × 10−4 135<br/><br/>4.10.4 Determine α1 to an Accuracy of 7.8 × 10−6 135<br/><br/>4.10.5 Determine the Solar Oblateness to an Accuracy of 4.8 × 10−9 135<br/><br/>4.10.6 Test Any Time Variation of the Gravitational Constant, G, to an Accuracy of 3 × 10−13 Per Year 135<br/><br/>4.10.7 Characterize the Solar Corona 136<br/><br/>4.11 Comparison with Other Experiments 136<br/><br/>4.11.1 Cassini 136<br/><br/>4.11.2 Gravity Probe B 137<br/><br/>4.11.3 Messenger 137<br/><br/>4.11.4 Lunar Laser Ranging 137<br/><br/>4.11.5 Gaia 137<br/><br/>4.12 MORE Summary 138<br/><br/>4.13 Anomalous Motion of Pioneers 10 and 11 138<br/><br/>Appendix 4A Solar Corona Observation Methodology Illustrated by Mars Express 139<br/><br/>4A.1 Formulation 139<br/><br/>4A.2 Total Electron Content from Ranging Data 141<br/><br/>4A.3 Change in Total Electron Content from Doppler Data 143<br/><br/>4A.4 Electron Density 144<br/><br/>4A.5 Coronal Mass Ejections 145<br/><br/>4A.6 Separation of Uplink and Downlink Effects from Plasma 150<br/><br/>4A.7 Earth Atmospheric Correction 152<br/><br/>4A.8 Example Data 153<br/><br/>Appendix 4B Faraday Rotation Methodology Illustrated by Magellan Observations 157<br/><br/>4B.1 Formulation 157<br/><br/>4B.2 Coronal Radio Sounding 158<br/><br/>4B.3 The Faraday Rotation Effect 160<br/><br/>4B.4 Measurement of the Total Electron Content 161<br/><br/>4B.5 Combining the Faraday Rotation and Total Electron Content 162<br/><br/>4B.6 Instrument Overview: The Magellan Spacecraft 164<br/><br/>4B.7 Instrument Overview: The Deep Space Network 165<br/><br/>4B.8 Data Processing and Results 166<br/><br/>4B.9 Conclusion 167<br/><br/>Appendix 4C Precision Doppler Tracking of Deep Space Probes and the Search for Low-frequency Gravitational Radiation 171<br/><br/>4C.1 Background 171<br/><br/>4C.2 Response of Spacecraft Doppler Tracking to Gravitational Waves 172<br/><br/>4C.3 Noise in Doppler GW Observations and Their Transfer Functions 174<br/><br/>4C.4 Detector Performance 176<br/><br/>4C.4.1 Periodic and Quasi-periodic Waves 176<br/><br/>4C.4.2 Burst Waves 177<br/><br/>4C.4.3 Stochastic Waves 178<br/><br/>4C.5 Sensitivity Improvements in Future Doppler GW Observations 179<br/><br/>5 Technologies, Instrumentation, and Operations 181<br/><br/>5.1 Overview 181<br/><br/>5.1.1 End-to-End Instrumentation Overview 182<br/><br/>5.1.2 Experiment Error Budgets 187<br/><br/>5.2 Key Concepts and Terminology 191<br/><br/>5.2.1 The Allan Deviation for Frequency and Timing Standards 191<br/><br/>5.2.2 Signal Operational Modes 197<br/><br/>5.2.3 Reception Modes 200<br/><br/>5.2.4 Signal Carrier Modulation Modes 202<br/><br/>5.3 Radio Science Technologies 203<br/><br/>5.3.1 Spacecraft Ultrastable Oscillator 204<br/><br/>5.3.2 Spacecraft Ka-band Translator 213<br/><br/>5.3.3 Spacecraft Open-loop Receiver 215<br/><br/>5.3.4 Spacecraft Radio Science Beacon 215<br/><br/>5.3.5 Ground Water Vapor Radiometer 215<br/><br/>5.3.6 Ground Advanced Ranging Instrument 215<br/><br/>5.3.7 Ground Bethe Hole Coupler 216<br/><br/>5.3.8 Ground Advanced Pointing Techniques 217<br/><br/>5.4 Operations and Experiment Planning 217<br/><br/>5.5 Data Products 218<br/><br/>5.5.1 Range Rate 219<br/><br/>5.5.2 Range 220<br/><br/>5.5.3 Delta Differential One-way Ranging (Delta-DOR) 222<br/><br/>5.5.4 Differenced Range Versus Integrated Doppler 222<br/><br/>5.5.5 Open-loop Receiver (Radio Science Receiver) 223<br/><br/>5.5.6 Media Calibration 224<br/><br/>5.5.7 Spacecraft Trajectory 225<br/><br/>5.5.8 Calibration Data Sets 225<br/><br/>Appendix 5A Spacecraft Telecommunications System and Radio Science Flight Instrument for Several Deep Space Missions 227<br/><br/>6 Future Directions in Radio Science Investigations and Technologies 231<br/><br/>6.1 Fundamental Questions toward a Future Exploration Roadmap 231<br/><br/>6.1.1 Fundamental Questions about the Utility of RS Techniques 232<br/><br/>6.1.2 Possible Triggers for Specific Innovations for Future Investigations 233<br/><br/>6.1.3 Possible Synergies with Other Fields 233<br/><br/>6.1.4 Examining Relevant Methodologies 234<br/><br/>6.2 Science-Enabling Technologies: Constellations of Small Spacecraft 235<br/><br/>6.2.1 Constellations for Investigations of Atmospheric Structure and Dynamics 236<br/><br/>6.2.2 Constellations for Investigations of Interior Structure and Dynamics 238<br/><br/>6.2.3 Constellations for Simultaneous and Differential Measurements 239<br/><br/>6.2.4 Constellations of Entry Probes and Atmospheric Vehicles 240<br/><br/>6.2.5 Constellations for Investigations of Planetary Surface 241<br/><br/>6.3 Science-enabling via Optical Links 243<br/><br/>6.4 Science-enabling Calibration Techniques 243<br/><br/>6.4.1 Earth’s Troposphere Water Vapor Radiometry 244<br/><br/>6.4.2 Antenna Mechanical Noise 244<br/><br/>6.4.3 Advanced Ranging 245<br/><br/>6.5 Summary 246<br/><br/>Appendix 6A The National Academies Planetary Science Decadal Survey, Radio Science Contribution, 2009: Planetary Radio Science: Investigations of Interiors, Surfaces, Atmospheres, Rings, and Environments 247<br/><br/>6A.1 Summary 248<br/><br/>6A.2 Background 248<br/><br/>6A.3 Historical Opportunities and Discoveries 249<br/><br/>6A.4 Recent Opportunities and Discoveries 249<br/><br/>6A.5 Future Opportunities 250<br/><br/>6A.6 Technological Advances in Flight Instrumentation 252<br/><br/>6A.7 The Future of Flight Instrumentation 253<br/><br/>6A.7.1 Crosslink Radio Science 253<br/><br/>6A.7.2 Ka-band Transponders and Other Instrumentation 254<br/><br/>6A.8 Ground Instrumentation 254<br/><br/>6A.8.1 NASA’s Deep Space Network 254<br/><br/>6A.8.2 Other Facilities 254<br/><br/>6A.9 New Communications Architectures: Arrays and Optical Links 255<br/><br/>6A.10 Conclusion and Goals 255<br/><br/>Appendix 6B The National Academies Planetary Science Decadal Survey, Radio Science Contribution: Solar System Interiors, Atmospheres, and Surfaces Investigations via Radio Links: Goals for the Next Decade 257<br/><br/>6B.1 Summary 258<br/><br/>6B.2 Current Status of RS Investigations 259<br/><br/>6B.3 Key Science Goals for the Next Decade 260<br/><br/>6B.4 Radio Science Techniques for Achieving the Science Goals of the Next Decade 262<br/><br/>6B.5 Technology Development Needed in the Next Decade 263<br/><br/>References 267<br/><br/>Acronyms and Abbreviations 311<br/><br/>Index 331
520 ## - SUMMARY, ETC.
Summary, etc "Radio signals are used to communicate information between robotic space missions throughout the solar system and stations on Earth. These signals are altered in their electromagnetic properties between transmission and reception due to propagation effects caused primarily by intervening media as well as forces acting on the spacecraft. When observed for their scientific potential, such alternations can provide very valuable information about the nature and environment of the planetary bodies or solar system targets under exploration. This also applies to signals transmitted from one spacecraft and received at another, in the case of multi-spacecraft missions. The media that the radio links propagate through include planetary atmospheres, ionospheres, rings, plasma tori, cometary material, or the solar corona. The Doppler shift to the frequency of the signals caused by the relative motion between the spacecraft and ground stations, or any transmitter-receiver combination, can contain scientific information about the gravitational forces acting on the spacecraft resulting from the bulk mass, density distribution, and global interior structure of the planets or moons, among other effects"--
Assigning source Provided by publisher.
545 0# - BIOGRAPHICAL OR HISTORICAL DATA
Biographical or historical note About the Author<br/><br/>SAMI ASMAR is Manager of Strategic Partnerships and Mission Formulation at NASA’s Jet Propulsion Laboratory, and over three decades has become an expert in the field of radio science. He has held positions such as science co‐investigator as well as engineering and technology developer and manager. He lead the writing team of the Cassini Radio Science Users Guide, a published document on the data usage from the most complex planetary mission to date. His recognitions include three NASA exceptional achievement awards and other prestigious international awards and appointments.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name as entry element Space vehicles
General subdivision Tracking.
Authority record control number http://id.loc.gov/authorities/subjects/sh85126011.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name as entry element Space vehicles
General subdivision Radio equipment.
Authority record control number http://id.loc.gov/authorities/subjects/sh85126004.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name as entry element Radio astronomy.
Authority record control number http://id.loc.gov/authorities/subjects/sh85110440.
651 #0 - SUBJECT ADDED ENTRY--GEOGRAPHIC NAME
Geographic name Solar system.
Authority record control number http://id.loc.gov/authorities/subjects/sh85124544.
655 #4 - INDEX TERM--GENRE/FORM
Genre/form data or focus term Electronic books.
830 #0 - SERIES ADDED ENTRY--UNIFORM TITLE
Uniform title Deep-space communications and navigation series.
Authority record control number http://id.loc.gov/authorities/names/no2003026124.
856 ## - ELECTRONIC LOCATION AND ACCESS
Uniform Resource Identifier https://onlinelibrary.wiley.com/doi/book/10.1002/9781119734178
Link text Full text is available at Wiley Online Library Click here to view.
942 ## - ADDED ENTRY ELEMENTS
Source of classification or shelving scheme
Item type EBOOK
Holdings
Withdrawn status Lost status Source of classification or shelving scheme Damaged status Not for loan Permanent Location Current Location Date acquired Source of acquisition Full call number Date last seen Price effective from Item type
          COLLEGE LIBRARY COLLEGE LIBRARY 2024-09-11 Megatexts Phil. Inc. 621.3848 As54 2022 2024-09-11 2024-09-11 EBOOK