Analysis and Design of Shallow and Deep Foundations / (Record no. 81671)

000 -LEADER
fixed length control field 17180nam a22003377a 4500
003 - CONTROL NUMBER IDENTIFIER
control field CITU
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20220316153017.0
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 220316b ||||| |||| 00| 0 eng d
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9780470172773
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9780471431596
040 ## - CATALOGING SOURCE
Original cataloging agency CITU LRAC
Language of cataloging eng
041 ## - LANGUAGE CODE
Language code of text/sound track or separate title eng
082 00 - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 624.15
Edition number 22
100 1# - MAIN ENTRY--PERSONAL NAME
Preferred name for the person Reese, Lymon C.
Relator term author
245 ## - TITLE STATEMENT
Title Analysis and Design of Shallow and Deep Foundations /
Statement of responsibility, etc Lymon C. Reese, William M. Isenhower, Shin-Tower Wang
264 #1 - PUBLICATION, DISTRIBUTION, ETC. (IMPRINT)
Place of publication, distribution, etc Hoboken, N.J. :
Name of publisher, distributor, etc John Wiley,
Date of publication, distribution, etc c2006.
300 ## - PHYSICAL DESCRIPTION
Extent 1 online resource
336 ## - CONTENT TYPE
Content type term text
Content type code txt
Source rdacontent
337 ## - MEDIA TYPE
Media type term computer
Media type code c
Source rdamedia
338 ## - CARRIER TYPE
Carrier type term online resource
Carrier type code cr
Source rdacarrier
500 ## - GENERAL NOTE
General note ABOUT THE AUTHOR<br/>LYMON C. REESE is Nasser I. Al Rashid Chair Emeritus and Professor of Civil Engineering at the University of Texas, Austin. He's also a partner in the firm of Lymon C. Reese & Associates. He's the author of more than 150 technical papers and coauthor of several books, including Dynamics of Offshore Structures, Second Edition (published by Wiley).<br/><br/>WILLIAM M. ISENHOWER is a project manager for Lymon C. Reese & Associates. He is a codeveloper of the LPILE plus computer program and is a registered professional engineer in Texas.<br/><br/>SHIN-TOWER WANG is President of Lymon C. Reese & Associates. He is the author or coauthor of more than thirty papers and publications on foundation engineering. He is a registered professional engineer in Texas.
505 0# - CONTENTS
Formatted contents note TABLE OF CONTENTS<br/>Preface xvii<br/><br/>Acknowledgments xxi<br/><br/>Symbols and Notations xxiii<br/><br/>1 Introduction 1<br/><br/>1.1 Historical Use of Foundations 1<br/><br/>1.2 Kinds of Foundations and their Uses 1<br/><br/>1.2.1 Spread Footings and Mats 1<br/><br/>1.2.2 Deep Foundations 4<br/><br/>1.2.3 Hybrid Foundations 7<br/><br/>1.3 Concepts in Design 7<br/><br/>1.3.1 Visit the Site 7<br/><br/>1.3.2 Obtain Information on Geology at Site 7<br/><br/>1.3.3 Obtain Information on Magnitude and Nature of Loads on Foundation 8<br/><br/>1.3.4 Obtain Information on Properties of Soil at Site 8<br/><br/>1.3.5 Consider Long-Term Effects 9<br/><br/>1.3.6 Pay Attention to Analysis 9<br/><br/>1.3.7 Provide Recommendations for Tests of Deep Foundations 9<br/><br/>1.3.8 Observe the Behavior of the Foundation of a Completed Structure 10<br/><br/>Problems 10<br/><br/>2 Engineering Geology 11<br/><br/>2.1 Introduction 11<br/><br/>2.2 Nature of Soil Affected by Geologic Processes 12<br/><br/>2.2.1 Nature of Transported Soil 12<br/><br/>2.2.2 Weathering and Residual Soil 14<br/><br/>2.2.3 Nature of Soil Affected by Volcanic Processes 14<br/><br/>2.2.4 Nature of Glaciated Soil 15<br/><br/>2.2.5 Karst Geology 16<br/><br/>2.3 Available Data on Regions in the United States 16<br/><br/>2.4 U.S. Geological Survey and State Agencies 17<br/><br/>2.5 Examples of the Application of Engineering Geology 18<br/><br/>2.6 Site Visit 19<br/><br/>Problems 19<br/><br/>3 Fundamentals of Soil Mechanics 21<br/><br/>3.1 Introduction 21<br/><br/>3.2 Data Needed for the Design of Foundations 21<br/><br/>3.2.1 Soil and Rock Classification 22<br/><br/>3.2.2 Position of the Water Table 22<br/><br/>3.2.3 Shear Strength and Density 23<br/><br/>3.2.4 Deformability Characteristics 23<br/><br/>3.2.5 Prediction of Changes in Conditions and the Environment 24<br/><br/>3.3 Nature of Soil 24<br/><br/>3.3.1 Grain-Size Distribution 24<br/><br/>3.3.2 Types of Soil and Rock 26<br/><br/>3.3.3 Mineralogy of Common Geologic Materials 26<br/><br/>3.3.4 Water Content and Void Ratio 30<br/><br/>3.3.5 Saturation of Soil 31<br/><br/>3.3.6 Weight–Volume Relationships 31<br/><br/>3.3.7 Atterberg Limits and the Unified Soils Classification System 34<br/><br/>3.4 Concept of Effective Stress 37<br/><br/>3.4.1 Laboratory Tests for Consolidation of Soils 39<br/><br/>3.4.2 Spring and Piston Model of Consolidation 42<br/><br/>3.4.3 Determination of Initial Total Stresses 45<br/><br/>3.4.4 Calculation of Total and Effective Stresses 47<br/><br/>3.4.5 The Role of Effective Stress in Soil Mechanics 49<br/><br/>3.5 Analysis of Consolidation and Settlement 49<br/><br/>3.5.1 Time Rates of Settlement 49<br/><br/>3.5.2 One-Dimensional Consolidation Testing 57<br/><br/>3.5.3 The Consolidation Curve 64<br/><br/>3.5.4 Calculation of Total Settlement 67<br/><br/>3.5.5 Calculation of Settlement Due to Consolidation 68<br/><br/>3.5.6 Reconstruction of the Field Consolidation Curve 69<br/><br/>3.5.7 Effects of Sample Disturbance on Consolidation Properties 73<br/><br/>3.5.8 Correlation of Consolidation Indices with Index Tests 78<br/><br/>3.5.9 Comments on Accuracy of Settlement Computations 80<br/><br/>3.6 Shear Strength of Soils 81<br/><br/>3.6.1 Introduction 81<br/><br/>3.6.2 Friction Between Two Surfaces in Contact 81<br/><br/>3.6.3 Direct Shear Testing 84<br/><br/>3.6.4 Triaxial Shear Testing 84<br/><br/>3.6.5 Drained Triaxial Tests on Sand 89<br/><br/>3.6.6 Triaxial Shear Testing of Saturated Clays 92<br/><br/>3.6.7 The SHANSEP Method 119<br/><br/>3.6.8 Other Types of Shear Testing for Soils 122<br/><br/>3.6.9 Selection of the Appropriate Testing Method 123<br/><br/>Problems 124<br/><br/>4 Investigation of Subsurface Conditions 134<br/><br/>4.1 Introduction 134<br/><br/>4.2 Methods of Advancing Borings 136<br/><br/>4.2.1 Wash-Boring Technique 136<br/><br/>4.2.2 Continuous-Flight Auger with Hollow Core 137<br/><br/>4.3 Methods of Sampling 139<br/><br/>4.3.1 Introduction 139<br/><br/>4.3.2 Sampling with Thin-Walled Tubes 139<br/><br/>4.3.3 Sampling with Thick-Walled Tubes 142<br/><br/>4.3.4 Sampling Rock 142<br/><br/>4.4 In Situ Testing of Soil 144<br/><br/>4.4.1 Cone Penetrometer and Piezometer-Cone Penetrometer 144<br/><br/>4.4.2 Vane Shear Device 146<br/><br/>4.4.3 Pressuremeter 148<br/><br/>4.5 Boring Report 152<br/><br/>4.6 Subsurface Investigations for Offshore Structures 153<br/><br/>Problems 155<br/><br/>5 Principal Types of Foundations 158<br/><br/>5.1 Shallow Foundations 158<br/><br/>5.2 Deep Foundations 160<br/><br/>5.2.1 Introduction 160<br/><br/>5.2.2 Driven Piles with Impact Hammer 160<br/><br/>5.2.3 Drilled Shafts 162<br/><br/>5.2.4 Augercast Piles 168<br/><br/>5.2.5 GeoJet Piles 170<br/><br/>5.2.6 Micropiles 172<br/><br/>5.3 Caissons 172<br/><br/>5.4 Hybrid Foundation 173<br/><br/>Problems 175<br/><br/>6 Designing Stable Foundations 176<br/><br/>6.1 Introduction 176<br/><br/>6.2 Total and Differential Settlement 177<br/><br/>6.3 Allowable Settlement of Structures 178<br/><br/>6.3.1 Tolerance of Buildings to Settlement 178<br/><br/>6.3.2 Exceptional Case of Settlement 178<br/><br/>6.3.3 Problems in Proving Settlement 180<br/><br/>6.4 Soil Investigations Appropriate to Design 180<br/><br/>6.4.1 Planning 180<br/><br/>6.4.2 Favorable Profiles 181<br/><br/>6.4.3 Soils with Special Characteristics 181<br/><br/>6.4.4 Calcareous Soil 182<br/><br/>6.5 Use of Valid Analytical Methods 186<br/><br/>6.5.1 Oil Tank in Norway 187<br/><br/>6.5.2 Transcona Elevator in Canada 187<br/><br/>6.5.3 Bearing Piles in China 188<br/><br/>6.6 Foundations at Unstable Slopes 189<br/><br/>6.6.1 Pendleton Levee 189<br/><br/>6.6.2 Fort Peck Dam 190<br/><br/>6.7 Effects of Installation on the Quality of Deep Foundations 190<br/><br/>6.7.1 Introduction 190<br/><br/>6.8 Effects of Installation of Deep Foundations on Nearby Structures 192<br/><br/>6.8.1 Driving Piles 192<br/><br/>6.9 Effects of Excavations on Nearby Structures 193<br/><br/>6.10 Deleterious Effects of the Environment on Foundations 194<br/><br/>6.11 Scour of Soil at Foundations 194<br/><br/>Problems 194<br/><br/>7 Theories of Bearing Capacity and Settlement 196<br/><br/>7.1 Introduction 196<br/><br/>7.2 Terzaghi’s Equations for Bearing Capacity 198<br/><br/>7.3 Revised Equations for Bearing Capacity 199<br/><br/>7.4 Extended Formulas for Bearing Capacity by J. Brinch Hansen 200<br/><br/>7.4.1 Eccentricity 203<br/><br/>7.4.2 Load Inclination Factors 204<br/><br/>7.4.3 Base and Ground Inclination 205<br/><br/>7.4.4 Shape Factors 205<br/><br/>7.4.5 Depth Effect 206<br/><br/>7.4.6 Depth Factors 206<br/><br/>7.4.7 General Formulas 208<br/><br/>7.4.8 Passive Earth Pressure 208<br/><br/>7.4.9 Soil Parameters 209<br/><br/>7.4.10 Example Computations 209<br/><br/>7.5 Equations for Computing Consolidation Settlement of Shallow Foundations on Saturated Clays 213<br/><br/>7.5.1 Introduction 213<br/><br/>7.5.2 Prediction of Total Settlement Due to Loading of Clay Below the Water Table 214<br/><br/>7.5.3 Prediction of Time Rate of Settlement Due to Loading of Clay Below the Water Table 219<br/><br/>Problems 222<br/><br/>8 Principles for the Design of Foundations 223<br/><br/>8.1 Introduction 223<br/><br/>8.2 Standards of Professional Conduct 223<br/><br/>8.2.1 Fundamental Principles 223<br/><br/>8.2.2 Fundamental Canons 224<br/><br/>8.3 Design Team 224<br/><br/>8.4 Codes and Standards 225<br/><br/>8.5 Details of the Project 225<br/><br/>8.6 Factor of Safety 226<br/><br/>8.6.1 Selection of a Global Factor of Safety 228<br/><br/>8.6.2 Selection of Partial Factors of Safety 229<br/><br/>8.7 Design Process 230<br/><br/>8.8 Specifications and Inspection of the Project 231<br/><br/>8.9 Observation of the Completed Structure 232<br/><br/>Problems 233<br/><br/>Appendix 8.1 234<br/><br/>9 Geotechnical Design of Shallow Foundations 235<br/><br/>9.1 Introduction 235<br/><br/>9.2 Problems with Subsidence 235<br/><br/>9.3 Designs to Accommodate Construction 237<br/><br/>9.3.1 Dewatering During Construction 237<br/><br/>9.3.2 Dealing with Nearby Structures 237<br/><br/>9.4 Shallow Foundations on Sand 238<br/><br/>9.4.1 Introduction 238<br/><br/>9.4.2 Immediate Settlement of Shallow Foundations on Sand 239<br/><br/>9.4.3 Bearing Capacity of Footings on Sand 244<br/><br/>9.4.4 Design of Rafts on Sand 247<br/><br/>9.5 Shallow Foundations on Clay 247<br/><br/>9.5.1 Settlement from Consolidation 247<br/><br/>9.5.2 Immediate Settlement of Shallow Foundations on Clay 251<br/><br/>9.5.3 Design of Shallow Foundations on Clay 253<br/><br/>9.5.4 Design of Rafts 255<br/><br/>9.6 Shallow Foundations Subjected to Vibratory Loading 255<br/><br/>9.7 Designs in Special Circumstances 257<br/><br/>9.7.1 Freezing Weather 257<br/><br/>9.7.2 Design of Shallow Foundations on Collapsible Soil 260<br/><br/>9.7.3 Design of Shallow Foundations on Expansive Clay 260<br/><br/>9.7.4 Design of Shallow Foundations on Layered Soil 262<br/><br/>9.7.5 Analysis of a Response of a Strip Footing by Finite Element Method 263<br/><br/>Problems 265<br/><br/>10 Geotechnical Design of Driven Piles Under Axial Loads 270<br/><br/>10.1 Comment on the Nature of the Problem 270<br/><br/>10.2 Methods of Computation 273<br/><br/>10.2.1 Behavior of Axially Loaded Piles 273<br/><br/>10.2.2 Geotechnical Capacity of Axially Loaded Piles 275<br/><br/>10.3 Basic Equation for Computing the Ultimate Geotechnical Capacity of a Single Pile 277<br/><br/>10.3.1 API Methods 277<br/><br/>10.3.2 Revised Lambda Method 284<br/><br/>10.3.3 U.S. Army Corps Method 286<br/><br/>10.3.4 FHWA Method 291<br/><br/>10.4 Analyzing the Load–Settlement Relationship of an Axially Loaded Pile 297<br/><br/>10.4.1 Methods of Analysis 297<br/><br/>10.4.2 Interpretation of Load-Settlement Curves 303<br/><br/>10.5 Investigation of Results Based on the Proposed Computation Method 306<br/><br/>10.6 Example Problems 307<br/><br/>10.6.1 Skin Friction 308<br/><br/>10.7 Analysis of Pile Driving 312<br/><br/>10.7.1 Introduction 312<br/><br/>10.7.2 Dynamic Formulas 313<br/><br/>10.7.3 Reasons for the Problems with Dynamic Formulas 314<br/><br/>10.7.4 Dynamic Analysis by the Wave Equation 315<br/><br/>10.7.5 Effects of Pile Driving 317<br/><br/>10.7.6 Effects of Time After Pile Driving with No Load 320<br/><br/>Problems 321<br/><br/>11 Geotechnical Design of Drilled Shafts Under Axial Loading 323<br/><br/>11.1 Introduction 323<br/><br/>11.2 Presentation of the FHWA Design Procedure 323<br/><br/>11.2.1 Introduction 323<br/><br/>11.3 Strength and Serviceability Requirements 324<br/><br/>11.3.1 General Requirements 324<br/><br/>11.3.2 Stability Analysis 324<br/><br/>11.3.3 Strength Requirements 324<br/><br/>11.4 Design Criteria 325<br/><br/>11.4.1 Applicability and Deviations 325<br/><br/>11.4.2 Loading Conditions 325<br/><br/>11.4.3 Allowable Stresses 325<br/><br/>11.5 General Computations for Axial Capacity of Individual Drilled Shafts 325<br/><br/>11.6 Design Equations for Axial Capacity in Compression and in Uplift 326<br/><br/>11.6.1 Description of Soil and Rock for Axial Capacity Computations 326<br/><br/>11.6.2 Design for Axial Capacity in Cohesive Soils 326<br/><br/>11.6.3 Design for Axial Capacity in Cohesionless Soils 334<br/><br/>11.6.4 Design for Axial Capacity in Cohesive Intermediate Geomaterials and Jointed Rock 345<br/><br/>11.6.5 Design for Axial Capacity in Cohesionless Intermediate Geomaterials 362<br/><br/>11.6.6 Design for Axial Capacity in Massive Rock 365<br/><br/>11.6.7 Addition of Side Resistance and End Bearing in Rock 374<br/><br/>11.6.8 Commentary on Design for Axial Capacity in Karst 375<br/><br/>11.6.9 Comparison of Results from Theory and Experiment 376<br/><br/>Problems 377<br/><br/>12 Fundamental Concepts Regarding Deep Foundations Under Lateral Loading 379<br/><br/>12.1 Introduction 379<br/><br/>12.1.1 Description of the Problem 379<br/><br/>12.1.2 Occurrence of Piles Under Lateral Loading 379<br/><br/>12.1.3 Historical Comment 381<br/><br/>12.2 Derivation of the Differential Equation 382<br/><br/>12.2.1 Solution of the Reduced Form of the Differential Equation 386<br/><br/>12.3 Response of Soil to Lateral Loading 393<br/><br/>12.4 Effect of the Nature of Loading on the Response of Soil 396<br/><br/>12.5 Method of Analysis for Introductory Solutions for a Single Pile 397<br/><br/>12.6 Example Solution Using Nondimensional Charts for Analysis of a Single Pile 401<br/><br/>Problems 411<br/><br/>13 Analysis of Individual Deep Foundations Under Axial Loading Using t-z Model 413<br/><br/>13.1 Short-Term Settlement and Uplift 413<br/><br/>13.1.1 Settlement and Uplift Movements 413<br/><br/>13.1.2 Basic Equations 414<br/><br/>13.1.3 Finite Difference Equations 417<br/><br/>13.1.4 Load-Transfer Curves 417<br/><br/>13.1.5 Load-Transfer Curves for Side Resistance in Cohesive Soil 418<br/><br/>13.1.6 Load-Transfer Curves for End Bearing in Cohesive Soil 419<br/><br/>13.1.7 Load-Transfer Curves for Side Resistance in Cohesionless Soil 421<br/><br/>13.1.8 Load-Transfer Curves for End Bearing in Cohesionless Soil 425<br/><br/>13.1.9 Load-Transfer Curves for Cohesionless Intermediated Geomaterials 426<br/><br/>13.1.10 Example Problem 430<br/><br/>13.1.11 Experimental Techniques for Obtaining Load-Transfer Versus Movement Curves 436<br/><br/>13.2 Design for Vertical Ground Movements Due to Downdrag or Expansive Uplift 437<br/><br/>13.2.1 Downward Movement Due to Downdrag 438<br/><br/>13.2.2 Upward Movement Due to Expansive Uplift 439<br/><br/>Problems 440<br/><br/>14 Analysis and Design By Computer or Piles Subjected to Lateral Loading 441<br/><br/>14.1 Nature of the Comprehensive Problem 441<br/><br/>14.2 Differential Equation for a Comprehensive Solution 442<br/><br/>14.3 Recommendations for p-y Curves for Soil and Rock 443<br/><br/>14.3.1 Introduction 443<br/><br/>14.3.2 Recommendations for p-y Curves for Clays 447<br/><br/>14.3.3 Recommendations for p-y Curves for Sands 464<br/><br/>14.3.4 Modifications to p-y Curves for Sloping Ground 473<br/><br/>14.3.5 Modifications for Raked (Battered Piles) 477<br/><br/>14.3.6 Recommendations for p-y Curves for Rock 478<br/><br/>14.4 Solution of the Differential Equation by Computer 484<br/><br/>14.4.1 Introduction 484<br/><br/>14.4.2 Formulation of the Equation by Finite Differences 486<br/><br/>14.4.3 Equations for Boundary Conditions for Useful Solutions 487<br/><br/>14.5 Implementation of Computer Code 489<br/><br/>14.5.1 Selection of the Length of the Increment 490<br/><br/>14.5.2 Safe Penetration of Pile with No Axial Load 491<br/><br/>14.5.3 Buckling of a Pipe Extending Above the Groundline 492<br/><br/>14.5.4 Steel Pile Supporting a Retaining Wall 492<br/><br/>14.5.5 Drilled Shaft Supporting an Overhead Structure 496<br/><br/>Problems 499<br/><br/>15 Analysis of Pile Groups 503<br/><br/>15.1 Introduction 503<br/><br/>15.2 Distribution of Load to Piles in a Group: The Two-Dimensional Problem 503<br/><br/>15.2.1 Model of the Problem 504<br/><br/>15.2.2 Detailed Step-by-Step Solution Procedure 510<br/><br/>15.3 Modification of p-y Curves for Battered Piles 510<br/><br/>15.4 Example Solution Showing Distribution of a Load to Piles in a Two-Dimensional Group 511<br/><br/>15.4.1 Solution by Hand Computations 511<br/><br/>15.5 Efficiency of Piles in Groups Under Lateral Loading 517<br/><br/>15.5.1 Modifying Lateral Resistance of Closely Spaced Piles 517<br/><br/>15.5.2 Customary Methods of Adjusting Lateral Resistance for Close Spacing 518<br/><br/>15.5.3 Adjusting for Close Spacing under Lateral Loading by Modified p-y Curves 521<br/><br/>15.6 Efficiency of Piles in Groups Under Axial Loading 527<br/><br/>15.6.1 Introduction 527<br/><br/>15.6.2 Efficiency of Piles in a Group in Cohesionless Soils 529<br/><br/>15.6.3 Efficiency of Piles in a Group in Cohesive Soils 531<br/><br/>15.6.4 Concluding Comments 534<br/><br/>Problems 535<br/><br/>Appendix 537<br/><br/>References 539<br/><br/>Index 559<br/><br/>
520 ## - SUMMARY, ETC.
Summary, etc DESCRIPTION<br/>One-of-a-kind coverage on the fundamentals of foundation analysis and design<br/><br/>Analysis and Design of Shallow and Deep Foundations is a significant new resource to the engineering principles used in the analysis and design of both shallow and deep, load-bearing foundations for a variety of building and structural types. Its unique presentation focuses on new developments in computer-aided analysis and soil-structure interaction, including foundations as deformable bodies.<br/><br/>Written by the world's leading foundation engineers, Analysis and Design of Shallow and Deep Foundations covers everything from soil investigations and loading analysis to major types of foundations and construction methods. It also features:<br/>* Coverage on computer-assisted analytical methods, balanced with standard methods such as site visits and the role of engineering geology<br/>* Methods for computing the capacity and settlement of both shallow and deep foundations<br/>* Field-testing methods and sample case studies, including projects where foundations have failed, supported with analyses of the failure<br/>* CD-ROM containing demonstration versions of analytical geotechnical software from Ensoft, Inc. tailored for use by students in the classroom<br/>
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name as entry element Foundations
General subdivision Design and construction.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name as entry element Foundations.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name as entry element Soil-structure interaction.
700 1# - ADDED ENTRY--PERSONAL NAME
Personal name Isenhower, William M.
Relator term author
700 1# - ADDED ENTRY--PERSONAL NAME
Personal name Wang, Shin-Tower
Relator term author
856 ## - ELECTRONIC LOCATION AND ACCESS
Uniform Resource Identifier https://onlinelibrary.wiley.com/doi/book/10.1002/9780470172773
Link text Full text available at Wiley Online Library Click here to view
942 ## - ADDED ENTRY ELEMENTS
Source of classification or shelving scheme
Item type EBOOK
Holdings
Withdrawn status Lost status Source of classification or shelving scheme Damaged status Not for loan Permanent Location Current Location Date acquired Source of acquisition Inventory number Full call number Barcode Date last seen Price effective from Item type
          COLLEGE LIBRARY COLLEGE LIBRARY 2022-03-16 Megatexts Phil. Inc. 52400 624.15 R25933 2006 CL-52400 2022-03-16 2022-03-16 EBOOK