Remote sensing and actuation using networked unmanned vehicles / (Record no. 61988)

000 -LEADER
fixed length control field 10772cam a2200457 i 4500
001 - CONTROL NUMBER
control field 17164598
003 - CONTROL NUMBER IDENTIFIER
control field CITU
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20230217170249.0
007 - PHYSICAL DESCRIPTION FIXED FIELD--GENERAL INFORMATION
fixed length control field cr an aaaaa
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 120214t20122012njua b 001 0 eng
010 ## - LIBRARY OF CONGRESS CONTROL NUMBER
LC control number 2012006660
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9781118377178 (ebook)
040 ## - CATALOGING SOURCE
Original cataloging agency DLC
Language of cataloging eng
Transcribing agency DLC
Description conventions rda
Modifying agency DLC
041 ## - LANGUAGE CODE
Language code of text/sound track or separate title eng.
042 ## - AUTHENTICATION CODE
Authentication code pcc
050 00 - LIBRARY OF CONGRESS CALL NUMBER
Classification number GB400.42.R4
Item number C46 2012
082 00 - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 621.3678
Edition number 23
084 ## - OTHER CLASSIFICATION NUMBER
Classification number TEC036000
Source of number bisacsh
100 1# - MAIN ENTRY--PERSONAL NAME
Preferred name for the person Chao, Haiyang,
Relator term author.
245 10 - TITLE STATEMENT
Title Remote sensing and actuation using networked unmanned vehicles /
Statement of responsibility, etc Haiyang Chao, Yangquan Chen.
264 #1 - PUBLICATION, DISTRIBUTION, ETC. (IMPRINT)
Place of publication, distribution, etc Hoboken, New Jersey :
Name of publisher, distributor, etc Wiley-IEEE Press,
Date of publication, distribution, etc [2012]
300 ## - PHYSICAL DESCRIPTION
Extent 1 online resource (240 pages).
336 ## - CONTENT TYPE
Source rdacontent
Content type term text
Content type code txt
337 ## - MEDIA TYPE
Source rdamedia
Media type term computer
Media type code c
338 ## - CARRIER TYPE
Source rdacarrier
Carrier type term online resource
Carrier type code cr
500 ## - GENERAL NOTE
General note ABOUT THE AUTHOR<br/>HAIYANG CHAO, PhD, is a postdoctoral fellow in the Department of Mechanical and Aerospace Engineering at West Virginia University in Morgantown. He authored or coauthored more than twenty peer-reviewed research papers and is one of the key developers of AggieAir, a low-cost, small UAV platform for remote sensing applications.<br/><br/>YANGQUAN CHEN, PhD, is Associate Professor of Electrical and Computer Engineering at Utah State University in Logan. He holds fourteen U.S. patents and is the author of several research monographs and edited volumes, five textbooks, and over 500 peer-reviewed research papers.
504 ## - BIBLIOGRAPHY, ETC. NOTE
Bibliography, etc Includes bibliographical references and index.
505 0# - CONTENTS
Formatted contents note List of Figures xv<br/><br/>List of Tables xix<br/><br/>Foreword xxi<br/><br/>Preface xxiii<br/><br/>Acknowledgments xxv<br/><br/>Acronyms xxvii<br/><br/>1 Introduction 1<br/><br/>1.1 Monograph Roadmap 1<br/><br/>1.1.1 Sensing and Control in the Information-Rich World 1<br/><br/>1.1.2 Typical Civilian Application Scenarios 3<br/><br/>1.1.3 Challenges in Sensing and Control Using Unmanned Vehicles 5<br/><br/>1.2 Research Motivations 7<br/><br/>1.2.1 Small Unmanned Aircraft System Design for Remote Sensing 7<br/><br/>1.2.2 State Estimation for Small UAVs 8<br/><br/>1.2.3 Advanced Flight Control for Small UAVs 9<br/><br/>1.2.4 Cooperative Remote Sensing Using Multiple UAVs 10<br/><br/>1.2.5 Diffusion Control Using Mobile Actuator and Sensor Networks 11<br/><br/>1.3 Monograph Contributions 11<br/><br/>1.4 Monograph Organization 12<br/><br/>References 12<br/><br/>2 AggieAir: A Low-Cost Unmanned Aircraft System for Remote Sensing 15<br/><br/>2.1 Introduction 15<br/><br/>2.2 Small UAS Overview 17<br/><br/>2.2.1 Autopilot Hardware 19<br/><br/>2.2.2 Autopilot Software 21<br/><br/>2.2.3 Typical Autopilots for Small UAVs 22<br/><br/>2.3 AggieAir UAS Platform 26<br/><br/>2.3.1 Remote Sensing Requirements 26<br/><br/>2.3.2 AggieAir System Structure 27<br/><br/>2.3.3 Flying-Wing Airframe 30<br/><br/>2.3.4 OSAM-Paparazzi Autopilot 31<br/><br/>2.3.5 OSAM Image Payload Subsystem 32<br/><br/>2.3.6 gRAID Image Georeference Subsystem 36<br/><br/>2.4 OSAM-Paparazzi Interface Design for IMU Integration 39<br/><br/>2.4.1 Hardware Interface Connections 40<br/><br/>2.4.2 Software Interface Design 41<br/><br/>2.5 AggieAir UAS Test Protocol and Tuning 45<br/><br/>2.5.1 AggieAir UAS Test Protocol 45<br/><br/>2.5.2 AggieAir Controller Tuning Procedure 46<br/><br/>2.6 Typical Platforms and Flight Test Results 47<br/><br/>2.6.1 Typical Platforms 47<br/><br/>2.6.2 Flight Test Results 48<br/><br/>2.7 Chapter Summary 50<br/><br/>References 50<br/><br/>3 Attitude Estimation Using Low-Cost IMUs for Small Unmanned Aerial Vehicles 53<br/><br/>3.1 State Estimation Problem Definition 54<br/><br/>3.2 Rigid Body Rotations Basics 55<br/><br/>3.2.1 Frame Definition 55<br/><br/>3.2.2 Rotation Representations 56<br/><br/>3.2.3 Conversion Between Rotation Representations 57<br/><br/>3.2.4 UAV Kinematics 58<br/><br/>3.3 Low-Cost Inertial Measurement Units: Hardware and Sensor Suites 60<br/><br/>3.3.1 IMU Basics and Notations 60<br/><br/>3.3.2 Sensor Packs 61<br/><br/>3.3.3 IMU Categories 63<br/><br/>3.3.4 Example Low-Cost IMUs 63<br/><br/>3.4 Attitude Estimation Using Complementary Filters on SO(3) 65<br/><br/>3.4.1 Passive Complementary Filter 66<br/><br/>3.4.2 Explicit Complementary Filter 66<br/><br/>3.4.3 Flight Test Results 67<br/><br/>3.5 Attitude Estimation Using Extended Kalman Filters 68<br/><br/>3.5.1 General Extended Kalman Filter 68<br/><br/>3.5.2 Quaternion-Based Extended Kalman Filter 69<br/><br/>3.5.3 Euler Angles-Based Extended Kalman Filter 69<br/><br/>3.6 AggieEKF: GPS-Aided Extended Kalman Filter 70<br/><br/>3.7 Chapter Summary 74<br/><br/>References 74<br/><br/>4 Lateral Channel Fractional Order Flight Controller Design for a Small UAV 77<br/><br/>4.1 Introduction 77<br/><br/>4.2 Preliminaries of UAV Flight Control 78<br/><br/>4.3 Roll-Channel System Identification and Control 79<br/><br/>4.3.1 System Model 80<br/><br/>4.3.2 Excitation Signal for System Identification 80<br/><br/>4.3.3 Parameter Optimization 81<br/><br/>4.4 Fractional Order Controller Design 81<br/><br/>4.4.1 Fractional Order Operators 81<br/><br/>4.4.2 PIλ Controller Design 82<br/><br/>4.4.3 Fractional Order Controller Implementation 85<br/><br/>4.5 Simulation Results 86<br/><br/>4.5.1 Introduction to Aerosim Simulation Platform 87<br/><br/>4.5.2 Roll-Channel System Identification 87<br/><br/>4.5.3 Fractional-Order PI Controller Design Procedure 89<br/><br/>4.5.4 Integer-Order PID Controller Design 90<br/><br/>4.5.5 Comparison 90<br/><br/>4.6 UAV Flight Testing Results 92<br/><br/>4.6.1 The ChangE UAV Platform 92<br/><br/>4.6.2 System Identification 94<br/><br/>4.6.3 Proportional Controller and Integer Order PI Controller Design 96<br/><br/>4.6.4 Fractional Order PI Controller Design 97<br/><br/>4.6.5 Flight Test Results 98<br/><br/>4.7 Chapter Summary 99<br/><br/>References 99<br/><br/>5 Remote Sensing Using Single Unmanned Aerial Vehicle 101<br/><br/>5.1 Motivations for Remote Sensing 102<br/><br/>5.1.1 Water Management and Irrigation Control Requirements 102<br/><br/>5.1.2 Introduction of Remote Sensing 102<br/><br/>5.2 Remote Sensing Using Small UAVs 103<br/><br/>5.2.1 Coverage Control 103<br/><br/>5.2.2 Georeference Problem 105<br/><br/>5.3 Sample Applications for AggieAir UAS 109<br/><br/>5.3.1 Real-Time Surveillance 109<br/><br/>5.3.2 Farmland Coverage 109<br/><br/>5.3.3 Road Surveying 111<br/><br/>5.3.4 Water Area Coverage 112<br/><br/>5.3.5 Riparian Surveillance 112<br/><br/>5.3.6 Remote Data Collection 115<br/><br/>5.3.7 Other Applications 116<br/><br/>5.4 Chapter Summary 119<br/><br/>References 119<br/><br/>6 Cooperative Remote Sensing Using Multiple Unmanned Vehicles 121<br/><br/>6.1 Consensus-Based Formation Control 122<br/><br/>6.1.1 Consensus Algorithms 122<br/><br/>6.1.2 Implementation of Consensus Algorithms 123<br/><br/>6.1.3 MASnet Hardware Platform 123<br/><br/>6.1.4 Experimental Results 125<br/><br/>6.2 Surface Wind Profile Measurement Using Multiple UAVs 129<br/><br/>6.2.1 Problem Definition: Wind Profile Measurement 131<br/><br/>6.2.2 Wind Profile Measurement Using UAVs 133<br/><br/>6.2.3 Wind Profile Measurement Using Multiple UAVs 135<br/><br/>6.2.4 Preliminary Simulation and Experimental Results 136<br/><br/>6.3 Chapter Summary 140<br/><br/>References 140<br/><br/>7 Diffusion Control Using Mobile Sensor and Actuator Networks 143<br/><br/>7.1 Motivation and Background 143<br/><br/>7.2 Mathematical Modeling and Problem Formulation 144<br/><br/>7.3 CVT-Based Dynamical Actuator Motion Scheduling Algorithm 146<br/><br/>7.3.1 Motion Planning for Actuators with the First-Order Dynamics 146<br/><br/>7.3.2 Motion Planning for Actuators with the Second-Order Dynamics 147<br/><br/>7.3.3 Neutralizing Control 147<br/><br/>7.4 Grouping Effect in CVT-Based Diffusion Control 147<br/><br/>7.4.1 Grouping for CVT-Based Diffusion Control 148<br/><br/>7.4.2 Diffusion Control Simulation with Different Group Sizes 148<br/><br/>7.4.3 Grouping Effect Summary 150<br/><br/>7.5 Information Consensus in CVT-Based Diffusion Control 154<br/><br/>7.5.1 Basic Consensus Algorithm 154<br/><br/>7.5.2 Requirements of Diffusion Control 154<br/><br/>7.5.3 Consensus-Based CVT Algorithm 155<br/><br/>7.6 Simulation Results 158<br/><br/>7.7 Chapter Summary 164<br/><br/>References 164<br/><br/>8 Conclusions and Future Research Suggestions 167<br/><br/>8.1 Conclusions 167<br/><br/>8.2 Future Research Suggestions 168<br/><br/>8.2.1 VTOL UAS Design for Civilian Applications 168<br/><br/>8.2.2 Monitoring and Control of Fast-Evolving Processes 169<br/><br/>8.2.3 Other Future Research Suggestions 169<br/><br/>References 170<br/><br/>Appendix 171<br/><br/>A.1 List of Documents for CSOIS Flight Test Protocol 171<br/><br/>A.1.1 Sample CSOIS-OSAM Flight Test Request Form 171<br/><br/>A.1.2 Sample CSOIS-OSAM 48 in. UAV (IR) In-lab Inspection Form 172<br/><br/>A.1.3 Sample Preflight Checklist 172<br/><br/>A.2 IMU/GPS Serial Communication Protocols 173<br/><br/>A.2.1 u-blox GPS Serial Protocol 173<br/><br/>A.2.2 Crossbow MNAV IMU Serial Protocol 173<br/><br/>A.2.3 Microstrain GX2 IMU Serial Protocol 174<br/><br/>A.2.4 Xsens Mti-g IMU Serial Protocol 178<br/><br/>A.3 Paparazzi Autopilot Software Architecture: A Modification Guide 182<br/><br/>A.3.1 Autopilot Software Structure 182<br/><br/>A.3.2 Airborne C Files 183<br/><br/>A.3.3 OSAM-Paparazzi Interface Implementation 184<br/><br/>A.3.4 Configuration XML Files 185<br/><br/>A.3.5 Roll-Channel Fractional Order Controller Implementation 189<br/><br/>A.4 DiffMas2D Code Modification Guide 192<br/><br/>A.4.1 Files Description 192<br/><br/>A.4.2 Diffusion Animation Generation 193<br/><br/>A.4.3 Implementation of CVT-Consensus Algorithm 193<br/><br/>References 195<br/><br/>Topic Index 197
520 ## - SUMMARY, ETC.
Summary, etc "Unmanned systems and robotics technologies have become very popular recently owing to their ability to replace human beings in dangerous, tedious, or repetitious jobs. This book fill the gap in the field between research and real-world applications, providing scientists and engineers with essential information on how to design and employ networked unmanned vehicles for remote sensing and distributed control purposes. Target scenarios include environmental or agricultural applications such as river/reservoir surveillance, wind profiling measurement, and monitoring/control of chemical leaks"--
Assigning source Provided by publisher.
520 ## - SUMMARY, ETC.
Summary, etc "This book will stimulate other researchers in this field to work on more practical questions and provide some insights to industrial engineers who want to use unmanned systems for their application problems"--
Assigning source Provided by publisher.
520 ## - SUMMARY, ETC.
Summary, etc Unmanned systems and robotics technologies have become very popular recently owing to their ability to replace human beings in dangerous, tedious, or repetitious jobs. This book fill the gap in the field between research and real-world applications, providing scientists and engineers with essential information on how to design and employ networked unmanned vehicles for remote sensing and distributed control purposes. Target scenarios include environmental or agricultural applications such as river/reservoir surveillance, wind profiling measurement, and monitoring/control of chemical leaks.
526 ## - STUDY PROGRAM INFORMATION NOTE
-- 600-699
-- 621
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name as entry element Geomorphology
General subdivision Remote sensing.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name as entry element Environmental monitoring
General subdivision Remote sensing.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name as entry element Vehicles, Remotely piloted.
650 #7 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name as entry element TECHNOLOGY & ENGINEERING / Remote Sensing & Geographic Information Systems.
Source of heading or term bisacsh
655 #4 - INDEX TERM--GENRE/FORM
Genre/form data or focus term Electronic books.
700 1# - ADDED ENTRY--PERSONAL NAME
Personal name Chen, YangQuan,
Dates associated with a name 1966-
856 ## - ELECTRONIC LOCATION AND ACCESS
Link text Full text available at Wiley Online Library Click here to view
Uniform Resource Identifier https://onlinelibrary.wiley.com/doi/book/10.1002/9781118377178
942 ## - ADDED ENTRY ELEMENTS
Source of classification or shelving scheme
Item type EBOOK
Holdings
Withdrawn status Lost status Source of classification or shelving scheme Damaged status Not for loan Permanent Location Current Location Date acquired Source of acquisition Inventory number Full call number Barcode Date last seen Price effective from Item type
          COLLEGE LIBRARY COLLEGE LIBRARY 2021-04-20 Megatexts Phil. Inc. 50359 621.3678 C3642 2012 CL-50359 2021-04-20 2021-04-20 EBOOK