Audio source separation and speech enhancement / (Record no. 59746)

000 -LEADER
fixed length control field 13163cam a2200457 i 4500
001 - CONTROL NUMBER
control field 20476422
003 - CONTROL NUMBER IDENTIFIER
control field CITU
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20230216164259.0
006 - FIXED-LENGTH DATA ELEMENTS--ADDITIONAL MATERIAL CHARACTERISTICS--GENERAL INFORMATION
fixed length control field m |o d |
007 - PHYSICAL DESCRIPTION FIXED FIELD--GENERAL INFORMATION
fixed length control field cr |n|||||||||
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 180430s2018 nju ob 001 0 eng
010 ## - LIBRARY OF CONGRESS CONTROL NUMBER
LC control number 2018021195
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9781119279914 (epub)
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9781119279884 (pdf)
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
Cancelled/invalid ISBN 9781119279860
040 ## - CATALOGING SOURCE
Original cataloging agency DLC
Language of cataloging eng
Description conventions rda
Transcribing agency DLC
Modifying agency DLC
041 ## - LANGUAGE CODE
Language code of text/sound track or separate title eng.
042 ## - AUTHENTICATION CODE
Authentication code pcc
050 10 - LIBRARY OF CONGRESS CALL NUMBER
Classification number TK7882.S65
082 00 - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 006.4/54
Edition number 23
245 00 - TITLE STATEMENT
Title Audio source separation and speech enhancement /
Statement of responsibility, etc edited by Emmanuel Vincent, Tuomas Virtanen, Sharon Gannot.
264 #1 - PUBLICATION, DISTRIBUTION, ETC. (IMPRINT)
Place of publication, distribution, etc Hoboken, NJ :
Name of publisher, distributor, etc John Wiley & Sons,
Date of publication, distribution, etc 2018.
300 ## - PHYSICAL DESCRIPTION
Extent 1 online resource.
336 ## - CONTENT TYPE
Source rdacontent
Content type term text
Content type code txt
337 ## - MEDIA TYPE
Source rdamedia
Media type term computer
Media type code c
338 ## - CARRIER TYPE
Source rdacarrier
Carrier type term online resource
Carrier type code cr
500 ## - GENERAL NOTE
General note ABOUT THE AUTHOR<br/>EMMANUEL VINCENT is a Senior Research Scientist with Inria, Nancy, France. His research focuses on machine learning for speech and audio signal processing. He has been working on audio source separation for 15 years and co-authored over 180 publications in this field. His contributions include harmonic nonnegative matrix factorization, full-rank spatial covariance modeling, joint spatial/spectral estimation, deep learning based multichannel source separation, and objective performance metrics. He has given several keynotes, tutorials and summer school lectures, including at Interspeech 2012 and 2016, WASPAA 2015 and LVA/ICA 2015. He is a founding chair of the series of Signal Separation Evaluation Campaigns (SiSEC) and CHiME Speech Separation and Recognition Challenges and the chair of ISCA's special interest group on Robust Speech Processing.<br/><br/>TUOMAS VIRTANEN is a Professor with the Laboratory of Signal Processing, Tampere University of Technology, Finland, where he is leading the Audio Research Group. He is known for his pioneering work on single-channel sound source separation using nonnegative matrix factorization, and its application to noise-robust speech recognition, music content analysis, and sound event detection. His research interests also include content analysis and processing of audio signals in general. He has authored more than 170 publications and received four best paper awards. He is an IEEE Senior Member, a member of the Audio and Acoustic Signal Processing Technical Committee of IEEE Signal Processing Society, Associate Editor of IEEE/ACM Transaction on Audio, Speech, and Language Processing, and recipient of the ERC 2014 Starting Grant.<br/><br/>SHARON GANNOT is a Full Professor at the Faculty of Engineering, Bar-Ilan University, Israel, where he is heading the Speech and Signal Processing laboratory and the Signal Processing Track. His research interests include multi-microphone speech processing; distributed algorithms for noise reduction and speaker separation; array processing on manifold; dereverberation; single-microphone speech enhancement; and speaker localization and tracking. He received the Bar-Ilan University's Outstanding Lecturer Award for 2010 and 2014 and the Bar-Ilan Rector Innovation in Research Award in 2018. He has co-authored over 200 publications and lectured tutorials at ICASSP 2012, EUSIPCO 2012, ICASSP 2013, and EUSIPCO 2013 and a keynote address at IWAENC 2012. He was a co-editor of the book Speech Processing in Modern Communication: Challenges and Perspectives (Springer, 2012). He also served as an Associate Editor and a Senior Area Chair of the IEEE Transactions on Speech, Audio and Language Processing. He currently serves as the Chair of the IEEE Audio and Acoustic Signal Processing (AASP) Technical Committee.<br/><br/>PERMISSIONS<br/>Request permission to reuse
504 ## - BIBLIOGRAPHY, ETC. NOTE
Bibliography, etc Includes bibliographical references and index.
505 0# - CONTENTS
Formatted contents note List of Authors xvii<br/><br/>Preface xxi<br/><br/>Acknowledgment xxiii<br/><br/>Notations xxv<br/><br/>Acronyms xxix<br/><br/>About the Companion Website xxxi<br/><br/>Part I Prerequisites 1<br/><br/>1 Introduction 3<br/>Emmanuel Vincent, Sharon Gannot, and Tuomas Virtanen<br/><br/>1.1 Why are Source Separation and Speech Enhancement Needed? 3<br/><br/>1.2 What are the Goals of Source Separation and Speech Enhancement? 4<br/><br/>1.3 How can Source Separation and Speech Enhancement be Addressed? 9<br/><br/>1.4 Outline 11<br/><br/>Bibliography 12<br/><br/>2 Time-Frequency Processing: Spectral Properties 15<br/>Tuomas Virtanen, Emmanuel Vincent, and Sharon Gannot<br/><br/>2.1 Time-Frequency Analysis and Synthesis 15<br/><br/>2.2 Source Properties in the Time-Frequency Domain 23<br/><br/>2.3 Filtering in the Time-Frequency Domain 25<br/><br/>2.4 Summary 28<br/><br/>Bibliography 28<br/><br/>3 Acoustics: Spatial Properties 31<br/>Emmanuel Vincent, Sharon Gannot, and Tuomas Virtanen<br/><br/>3.1 Formalization of the Mixing Process 31<br/><br/>3.2 Microphone Recordings 32<br/><br/>3.3 Artificial Mixtures 36<br/><br/>3.4 Impulse Response Models 37<br/><br/>3.5 Summary 43<br/><br/>Bibliography 43<br/><br/>4 Multichannel Source Activity Detection, Localization, and Tracking 47<br/>Pasi Pertilä, Alessio Brutti, Piergiorgio Svaizer, and Maurizio Omologo<br/><br/>4.1 Basic Notions in Multichannel Spatial Audio 47<br/><br/>4.2 Multi-Microphone Source Activity Detection 52<br/><br/>4.3 Source Localization 54<br/><br/>4.4 Summary 60<br/><br/>Bibliography 60<br/><br/>Part II Single-Channel Separation and Enhancement 65<br/><br/>5 Spectral Masking and Filtering 67<br/>Timo Gerkmann and Emmanuel Vincent<br/><br/>5.1 Time-Frequency Masking 67<br/><br/>5.2 Mask Estimation Given the Signal Statistics 70<br/><br/>5.3 Perceptual Improvements 81<br/><br/>5.4 Summary 82<br/><br/>Bibliography 83<br/><br/>6 Single-Channel Speech Presence Probability Estimation and Noise Tracking 87<br/>Rainer Martin and Israel Cohen<br/><br/>6.1 Speech Presence Probability and its Estimation 87<br/><br/>6.2 Noise Power Spectrum Tracking 93<br/><br/>6.3 Evaluation Measures 102<br/><br/>6.4 Summary 104<br/><br/>Bibliography 104<br/><br/>7 Single-Channel Classification and Clustering Approaches 107<br/>FelixWeninger, Jun Du, Erik Marchi, and Tian Gao<br/><br/>7.1 Source Separation by Computational Auditory Scene Analysis 108<br/><br/>7.2 Source Separation by Factorial HMMs 111<br/><br/>7.3 Separation Based Training 113<br/><br/>7.4 Summary 125<br/><br/>Bibliography 125<br/><br/>8 Nonnegative Matrix Factorization 131<br/>Roland Badeau and Tuomas Virtanen<br/><br/>8.1 NMF and Source Separation 131<br/><br/>8.2 NMF Theory and Algorithms 137<br/><br/>8.3 NMF Dictionary LearningMethods 145<br/><br/>8.4 Advanced NMF Models 148<br/><br/>8.5 Summary 156<br/><br/>Bibliography 156<br/><br/>9 Temporal Extensions of Nonnegative Matrix Factorization 161<br/>Cédric Févotte, Paris Smaragdis, NasserMohammadiha, and Gautham J.Mysore<br/><br/>9.1 Convolutive NMF 161<br/><br/>9.2 Overview of DynamicalModels 169<br/><br/>9.3 Smooth NMF 170<br/><br/>9.4 Nonnegative State-Space Models 174<br/><br/>9.5 Discrete DynamicalModels 178<br/><br/>9.6 The Use of DynamicModels in Source Separation 182<br/><br/>9.7 Which Model to Use? 183<br/><br/>9.8 Summary 184<br/><br/>9.9 Standard Distributions 184<br/><br/>Bibliography 185<br/><br/>Part III Multichannel Separation and Enhancement 189<br/><br/>10 Spatial Filtering 191<br/>Shmulik Markovich-Golan,Walter Kellermann, and Sharon Gannot<br/><br/>10.1 Fundamentals of Array Processing 192<br/><br/>10.2 Array Topologies 197<br/><br/>10.3 Data-Independent Beamforming 199<br/><br/>10.4 Data-Dependent Spatial Filters: Design Criteria 202<br/><br/>10.5 Generalized Sidelobe Canceler Implementation 209<br/><br/>10.6 Postfilters 210<br/><br/>10.7 Summary 211<br/><br/>Bibliography 212<br/><br/>11 Multichannel Parameter Estimation 219<br/>Shmulik Markovich-Golan,Walter Kellermann, and Sharon Gannot<br/><br/>11.1 Multichannel Speech Presence Probability Estimators 219<br/><br/>11.2 Covariance Matrix Estimators Exploiting SPP 227<br/><br/>11.3 Methods forWeakly Guided and Strongly Guided RTF Estimation 228<br/><br/>11.4 Summary 231<br/><br/>Bibliography 231<br/><br/>12 Multichannel Clustering and Classification Approaches 235<br/>Michael I.Mandel, Shoko Araki, and Tomohiro Nakatani<br/><br/>12.1 Two-Channel Clustering 236<br/><br/>12.2 Multichannel Clustering 244<br/><br/>12.3 Multichannel Classification 251<br/><br/>12.4 Spatial Filtering Based on Masks 255<br/><br/>12.5 Summary 257<br/><br/>Bibliography 258<br/><br/>13 Independent Component and Vector Analysis 263<br/>Hiroshi Sawada and Zbynˇek Koldovský<br/><br/>13.1 Convolutive Mixtures and their Time-Frequency Representations 264<br/><br/>13.2 Frequency-Domain Independent Component Analysis 265<br/><br/>13.3 Independent Vector Analysis 279<br/><br/>13.4 Example 280<br/><br/>13.5 Summary 284<br/><br/>Bibliography 284<br/><br/>14 Gaussian Model Based Multichannel Separation 289<br/>Alexey Ozerov and Hirokazu Kameoka<br/><br/>14.1 Gaussian Modeling 289<br/><br/>14.2 Library of Spectral and SpatialModels 295<br/><br/>14.3 Parameter Estimation Criteria and Algorithms 300<br/><br/>14.4 Detailed Presentation of Some Methods 305<br/><br/>14.5 Summary 312<br/><br/>Acknowledgment 312<br/><br/>Bibliography 312<br/><br/>15 Dereverberation 317<br/>Emanuël A.P. Habets and Patrick A. Naylor<br/><br/>15.1 Introduction to Dereverberation 317<br/><br/>15.2 Reverberation Cancellation Approaches 319<br/><br/>15.3 Reverberation Suppression Approaches 329<br/><br/>15.4 Direct Estimation 335<br/><br/>15.5 Evaluation of Dereverberation 336<br/><br/>15.6 Summary 337<br/><br/>Bibliography 337<br/><br/>Part IV Application Scenarios and Perspectives 345<br/><br/>16 Applying Source Separation to Music 347<br/>Bryan Pardo, Antoine Liutkus, Zhiyao Duan, and Gaël Richard<br/><br/>16.1 Challenges and Opportunities 348<br/><br/>16.2 Nonnegative Matrix Factorization in the Case of Music 349<br/><br/>16.3 Taking Advantage of the Harmonic Structure of Music 354<br/><br/>16.4 Nonparametric Local Models: Taking Advantage of Redundancies in Music 358<br/><br/>16.5 Taking Advantage of Multiple Instances 363<br/><br/>16.6 Interactive Source Separation 367<br/><br/>16.7 Crowd-Based Evaluation 367<br/><br/>16.8 Some Examples of Applications 368<br/><br/>16.9 Summary 370<br/><br/>Bibliography 370<br/><br/>17 Application of Source Separation to Robust Speech Analysis and Recognition 377<br/>ShinjiWatanabe, Tuomas Virtanen, and Dorothea Kolossa<br/><br/>17.1 Challenges and Opportunities 377<br/><br/>17.2 Applications 380<br/><br/>17.3 Robust Speech Analysis and Recognition 390<br/><br/>17.4 Integration of Front-End and Back-End 397<br/><br/>17.5 Use of Multimodal Information with Source Separation 403<br/><br/>17.6 Summary 404<br/><br/>Bibliography 405<br/><br/>18 Binaural Speech Processing with Application to Hearing Devices 413<br/>Simon Doclo, Sharon Gannot, Daniel Marquardt, and Elior Hadad<br/><br/>18.1 Introduction to Binaural Processing 413<br/><br/>18.2 Binaural Hearing 415<br/><br/>18.3 Binaural Noise Reduction Paradigms 416<br/><br/>18.4 The Binaural Noise Reduction Problem 420<br/><br/>18.5 Extensions for Diffuse Noise 425<br/><br/>18.6 Extensions for Interfering Sources 431<br/><br/>18.7 Summary 437<br/><br/>Bibliography 437<br/><br/>19 Perspectives 443<br/>Emmanuel Vincent, Tuomas Virtanen, and Sharon Gannot<br/><br/>19.1 Advancing Deep Learning 443<br/><br/>19.2 Exploiting Phase Relationships 447<br/><br/>19.3 AdvancingMultichannel Processing 450<br/><br/>19.4 Addressing Multiple-Device Scenarios 453<br/><br/>19.5 TowardsWidespread Commercial Use 455<br/><br/>Acknowledgment 457<br/><br/>Bibliography 457<br/><br/>Index 465
520 ## - SUMMARY, ETC.
Summary, etc Learn the technology behind hearing aids, Siri, and Echo <br/><br/>Audio source separation and speech enhancement aim to extract one or more source signals of interest from an audio recording involving several sound sources. These technologies are among the most studied in audio signal processing today and bear a critical role in the success of hearing aids, hands-free phones, voice command and other noise-robust audio analysis systems, and music post-production software.<br/><br/>Research on this topic has followed three convergent paths, starting with sensor array processing, computational auditory scene analysis, and machine learning based approaches such as independent component analysis, respectively. This book is the first one to provide a comprehensive overview by presenting the common foundations and the differences between these techniques in a unified setting.<br/><br/>Key features:<br/><br/>Consolidated perspective on audio source separation and speech enhancement.<br/>Both historical perspective and latest advances in the field, e.g. deep neural networks.<br/>Diverse disciplines: array processing, machine learning, and statistical signal processing.<br/>Covers the most important techniques for both single-channel and multichannel processing.<br/>This book provides both introductory and advanced material suitable for people with basic knowledge of signal processing and machine learning. Thanks to its comprehensiveness, it will help students select a promising research track, researchers leverage the acquired cross-domain knowledge to design improved techniques, and engineers and developers choose the right technology for their target application scenario. It will also be useful for practitioners from other fields (e.g., acoustics, multimedia, phonetics, and musicology) willing to exploit audio source separation or speech enhancement as pre-processing tools for their own needs.
526 ## - STUDY PROGRAM INFORMATION NOTE
-- 000-099
-- 006
588 ## - SOURCE OF DESCRIPTION NOTE
Source of description note Description based on print version record and CIP data provided by publisher.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name as entry element Speech processing systems.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name as entry element Automatic speech recognition.
655 #4 - INDEX TERM--GENRE/FORM
Genre/form data or focus term Electronic books.
700 1# - ADDED ENTRY--PERSONAL NAME
Personal name Vincent, Emmanuel
Titles and other words associated with a name (Research scientist),
Relator term editor.
700 1# - ADDED ENTRY--PERSONAL NAME
Personal name Virtanen, Tuomas,
Relator term editor.
700 1# - ADDED ENTRY--PERSONAL NAME
Personal name Gannot, Sharon,
Relator term editor.
856 ## - ELECTRONIC LOCATION AND ACCESS
Link text Full text available at Wiley Online Library Click here to view
Uniform Resource Identifier https://onlinelibrary.wiley.com/doi/book/10.1002/9781119279860
942 ## - ADDED ENTRY ELEMENTS
Source of classification or shelving scheme
Item type EBOOK
Holdings
Withdrawn status Lost status Source of classification or shelving scheme Damaged status Not for loan Permanent Location Current Location Date acquired Source of acquisition Inventory number Full call number Barcode Date last seen Price effective from Item type
          COLLEGE LIBRARY COLLEGE LIBRARY 2021-03-23 Megatexts Phil. Inc. 50410 006.454 Au251 2018 50410 2021-03-23 2021-03-23 EBOOK