Chemical process design and integration / (Record no. 55357)

000 -LEADER
fixed length control field 15393cam a22003854a 4500
001 - CONTROL NUMBER
control field 13632513
003 - CONTROL NUMBER IDENTIFIER
control field CITU
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20241030110017.0
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 040622s2005 enka b 001 0 eng
010 ## - LIBRARY OF CONGRESS CONTROL NUMBER
LC control number 2004014695
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 0471486809 (acidfree paper)
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 0471486817 (pbk. : acidfree paper)
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9780471486817
040 ## - CATALOGING SOURCE
Original cataloging agency CITU LRAC
Language of cataloging eng
Transcribing agency DLC
Modifying agency DLC
041 ## - LANGUAGE CODE
Language code of text/sound track or separate title eng
042 ## - AUTHENTICATION CODE
Authentication code pcc
050 00 - LIBRARY OF CONGRESS CALL NUMBER
Classification number TP155.7
Item number .S573 2005
082 00 - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 660/.2812
Edition number 22
100 1# - MAIN ENTRY--PERSONAL NAME
Preferred name for the person Smith, Robin
Titles and other words associated with a name (Chemical engineer)
Relator term author
245 10 - TITLE STATEMENT
Title Chemical process design and integration /
Statement of responsibility, etc Robin Smith.
264 #1 - PUBLICATION, DISTRIBUTION, ETC. (IMPRINT)
Place of publication, distribution, etc Chichester, West Sussex, England ;
-- Hoboken, NJ :
Name of publisher, distributor, etc Wiley,
Date of publication, distribution, etc c2005.
300 ## - PHYSICAL DESCRIPTION
Extent xxiii, 687 pages :
Other physical details illustrations ;
Dimensions 29 cm.
336 ## - CONTENT TYPE
Source rdacontent
Content type term text
Content type code txt
337 ## - MEDIA TYPE
Source rdamedia
Media type term unmediated
Media type code n
338 ## - CARRIER TYPE
Source rdacarrier
Carrier type term volume
Carrier type code nc
504 ## - BIBLIOGRAPHY, ETC. NOTE
Bibliography, etc Includes bibliographical references and index.
505 ## - CONTENTS
Formatted contents note CONTENTS<br/> Preface<br/> Acknowledgements<br/> Nomenclature<br/>Chapter 1 The Nature of Chemical Process Design and Integration<br/>1.1 Chemical Products<br/>1.2 Formulation of Design Problems<br/>1.3 Chemical Process Design and Integration<br/>1.4 The Hierarchy of Chemical Process Design and Integration<br/>1.5 Continuous and Batch Processes<br/>1.6 New Design and Retrofit<br/>1.7 Approaches to Chemical Process Design and Integration<br/>1.8 Process Control<br/>1.9 The Nature of Chemical Process Design and Integration - Summary<br/>1.10 References<br/>Chapter 2 Process Economics<br/> 2.1 The Role of Process Economics<br/>2.2 Simple Economic Criteria<br/>2.3 Capital Cost for New Design<br/>2.4 Capital Cost for Retrofit<br/>2.5 Annualized Capital Cost<br/>2.6 Operating Cost<br/>2.7 Project Cash Flow and Economic Evaluation<br/>2.8 Investment Criteria<br/>2.9 Economic Evaluation - Summary<br/>2.10 Exercises<br/>2.11 References<br/>Chapter 3 Optimization<br/>3.1 Objective Functions<br/>3.2 Single Variable Optimization<br/>3.3 Multivariable Optimization<br/>3.4 Constrained Optimization<br/>3.5 Linear Programming<br/>3.6 Non-linear Programming<br/>3.7 Profile Optimization<br/>3.8 Structural Optimization<br/>3.9 Solution of Equations Using Optimization<br/>3.10 The Search for Global Optimality<br/>3.11 Optimization - Summary<br/>3.12 Exercises<br/>3.13 References<br/>Chapter 4 Phase Equilibrium and Thermodynamic Properties<br/>4.1 Equations of State<br/>4.2 Phase Equilibrium for Single Components<br/>4.3 Fugacity and Phase Equilibrium<br/>4.4 Vapor-liquid Equilibrium<br/>4.5 Vapor-liquid Equilibrium Based on Activity Coefficient Models<br/>4.6 Vapor-liquid Equilibrium Based on Equations of State<br/>4.7 Calculation of Vapor-liquid Equilibrium<br/>4.8 Liquid-liquid Equilibrium<br/>4.9 Liquid-liquid Equilibrium Activity Coefficient Models<br/>4.10 Calculation of Liquid-liquid Equilibrium<br/>4.11 Calculation of Enthalpy<br/>4.12 Calculation of Entropy<br/>4.13 Phase Equilibrium and Thermodynamic Properties - Summary<br/>4.14 Exercises<br/>4.15 References<br/>Chapter 5 Choice of Reactor I - Reactor Performance<br/>5.1 Reaction Paths<br/>5.2 Types of Reaction Systems<br/>5.3 Measures of Reactor Performance<br/>5.4 Rate of Reaction<br/>5.5 Idealized Reactor Models <br/>5.6 Choice of Idealized Reactor Model<br/>5.7 Choice of Reactor Performance<br/>5.8 Choice of Reactor Performance - Summary<br/>5.9 Exercises<br/>5.10 References<br/>Chapter 6 Choice of Reactor II - Reactor Conditions<br/>6.1 Reaction Equilibrium<br/>6.2 Reactor Temperature<br/>6.3 Reactor Pressure<br/>6.4 Reactor Phase<br/>6.5 Reactor Concentration<br/>6.6 Biochemical Reactions<br/>6.7 Catalysts<br/>6.8 Choice of Reactor Conditions - Summary<br/>6.9 Exercises<br/>6.10 References<br/>Chapter 7 Choice of Reactor III - Reactor Configuration<br/>7.1 Temperature Control<br/>7.2 Catalyst Deactivation<br/>7.3 Gas-liquid and Liquid-liquid Reactors<br/>7.4 Reactor Configuration<br/>7.5 Reactor Configuration for Heterogeneous Solid-catalyzed Reactions<br/>7.6 Reactor Configuration from Optimization of a Superstructure<br/>7.7 Choice of Reactor Configuration - Summary<br/>7.8 Exercises<br/>7.9 References<br/>Chapter 8 Choice of Separator for Heterogeneous Mixtures<br/>8.1 Homogeneous and Heterogeneous Separation<br/>8.2 Settling and Sedimentation<br/>8.3 Inertial and Centrifugal Separation<br/>8.4 Electrostatic Precipitation<br/>8.5 Filtration<br/>8.6 Scrubbing<br/>8.7 Flotation<br/>8.8 Drying<br/>8.9 Separation of Heterogeneous Mixtures - Summary<br/>8.10 Exercises<br/>8.11 References<br/>Chapter 9 Choice of Separator for Homogeneous Fluid Mixtures I - Distillation<br/>9.1 Single Stage Separation<br/>9.2 Distillation<br/>9.3 Binary Distillation<br/>9.4 Total and Minimum Reflux Conditions for Multicomponent Mixtures<br/>9.5 Finite Reflux Conditions for Multicomponent Mixtures<br/>9.6 Choice of Operating Conditions<br/>9.7 Limitations of Distillation<br/>9.8 Separation of Homogeneous Fluid Mixtures by Distillation - Summary<br/>9.9 Exercises<br/>9.10 References<br/>Chapter 10 Choice of Separator for Homogeneous Fluid Mixtures II - Other Methods<br/>10.1 Absorption<br/>10.2 Liquid-liquid Extraction<br/>10.3 Adsorption<br/>10.4 Membranes<br/>10.5 Crystallization<br/>10.6 Evaporation<br/>10.7 Separation of Homogeneous Fluid Mixtures by Other Methods - Summary<br/>10.8 Exercises<br/>10.9 References<br/>Chapter 11 Distillation Sequencing<br/>11.1 Distillation Sequencing Using Simple Columns<br/>11.2 Practical Constraints Restricting Options<br/>11.3 Choice of Sequence for Simple Non-integrated Distillation Columns<br/>11.4 Distillation Sequencing Using Columns with More than Two Products<br/>11.5 Distillation Sequencing Using Thermal Coupling<br/>11.6 Retrofit of Distillation Sequences<br/>11.7 Crude Oil Distillation <br/>11.8 Distillation Sequencing Based on Optimization of a Superstructure<br/>11.9 Distillation Sequencing - Summary<br/>11.10 Exercises<br/>11.11 References<br/>Chapter 12 Distillation Sequencing for Azeotropic Distillation<br/>12.1 Azeotropic Systems<br/>12.2 Change in Pressure<br/>12.3 Representation of Azeotropic Distillation<br/>12.4 Distillation at Total Reflux Conditions<br/>12.5 Distillation at Minimum Reflux Conditions<br/>12.6 Distillation at Finite Reflux Conditions<br/>12.7 Distillation Sequencing Using an Entrainer<br/>12.8 Heterogeneous Azeotropic Distillation <br/>12.9 Entrainer Selection<br/>12.10 Multicomponent Systems<br/>12.11 Trade-offs in Azeotropic Distillation <br/>12.12 Membrane Separation <br/>12.13 Distillation Sequencing for Azeotropic Distillation - Summary<br/>12.14 Exercises<br/>12.15 References<br/>Chapter 13 Reaction, Separation and Recycle Systems for Continuous Processes<br/>13.1 The Function of Process Recycles<br/>13.2 Recycles With Purges<br/>13.3 Pumping and Compression<br/>13.4 Simulation of Recycles<br/>13.5 The Process Yield<br/>13.6 Optimization of Reactor Conversion<br/>13.7 Optimization of Processes Involving a Purge<br/>13.8 Hybrid Reaction and Separation<br/>13.9 Feed, Product and Intermediate Storage<br/>13.10 Reaction and Separation Systems for Continuous Processes - Summary<br/>13.11 Exercises<br/>13.12 References<br/>Chapter 14 Reaction, Separation and Recycle Systems for Batch Processes<br/>14.1 Batch Processes<br/>14.2 Batch Reactors<br/>14.3 Batch Separation Processes<br/>14.4 Gantt Charts<br/>14.5 Production Schedules for Single Products<br/>14.6 Production Schedules for Multiple Products<br/>14.7 Equipment Cleaning and Material Transfer<br/>14.8 Synthesis of Reaction and Separation Systems for Batch Processes<br/>14.9 Optimization of Batch Processes<br/>14.10 Storage in Batch Processes<br/>14.11 Reaction-Separation Systems for Batch Processes - Summary<br/>14.12 Exercises<br/>14.13 References<br/>Chapter 15 Heat Exchanger Networks I - Heat Transfer Equipment<br/>15.1 Overall Heat Transfer Coefficients<br/>15.2 Heat Transfer Coefficients and Pressure Drops in Shell-and-tube Heat Exchangers<br/>15.3 Temperature Difference in Shell-and-tube Heat Exchangers<br/>15.4 Allocation of Fluids in Shell-and-tube Heat Exchangers<br/>15.5 Extended Surface Tubes<br/>15.6 Condensers<br/>15.7 Reboilers<br/>15.8 Other Types of Heat Exchanger Equipment<br/>15.9 Heat Exchanger Equipment - Summary<br/>15.10 Exercises<br/>15.11 References<br/>Chapter 16 Heat Exchanger Networks II - Energy Targets<br/>16.1 Composite Curves<br/>16.2 The Heat Recovery Pinch<br/>16.3 Threshold Problems<br/>16.4 The Problem Table Algorithm<br/>16.5 Non-global Minimum Temperature Differences<br/>16.6 Process Constraints<br/>16.7 Utility Selection<br/>16.8 Furnaces<br/>16.9 Cogeneration (Combined Heat and Power Generation)<br/>16.10 Integration of Heat Pumps<br/>16.11 Heat Exchanger Network and Utilities Energy Targets - Summary<br/>16.12 Exercises<br/>16.13 References<br/>Chapter 17 Heat Exchanger Networks II - Capital and Total Cost Targets<br/>17.1 Number of Heat Exchange Units<br/>17.2 Heat Exchange Area Targets<br/>17.3 Number of Shells Target<br/>17.4 Capital Cost Targets<br/>17.5 Total Cost Targets<br/>17.6 Heat Exchanger Network and Utilities Capital and Total Costs - Summary<br/>17.7 Exercises<br/>17.8 References<br/>Chapter 18 Heat Exchanger Networks III - Network Design<br/>18.1 The Pinch Design Method<br/>18.2 Design for Threshold Problems<br/>18.3 Stream Splitting<br/>18.4 Design for Multiple Pinches<br/>18.5 Remaining Problem Analysis<br/>18.6 Network Optimization<br/>18.7 Heat Exchanger Network Design Based on the Optimization of a Superstructure<br/>18.8 Heat Exchanger Network Retrofit<br/>18.9 Addition of New Heat Transfer Area in Retrofit <br/>18.10 Heat Exchanger Network Design - Summary<br/>18.11 Exercises<br/>18.12 References<br/>Chapter 19 Heat Exchanger Networks IV - Stream Data<br/>19.1 Process Changes for Heat Integration<br/>19.2 The Trade-offs Between Process Changes, Utility Selection,<br/>19.3 Data Extraction<br/>19.4 Heat Exchanger Network Stream Data - Summary<br/>19.5 Exercises<br/>19.6 Reference<br/>Chapter 20 Heat Integration of Reactors<br/>20.1 The Heat Integration Characteristics of Reactors<br/>20.2 Appropriate Placement of Reactors<br/>20.3 Use of the Grand Composite Curve for Heat Integration of Reactors<br/>20.4 Evolving Reactor Design to Improve Heat Integration<br/>20.5 Heat Integration of Reactors - Summary<br/>20.6 References<br/>Chapter 21 Heat Integration of Distillation<br/>21.1 The Heat Integration Characteristics of Distillation<br/>21.2 Appropriate Placement of Distillation<br/>21.3 Use of the Grand Composite Curve for Heat Integration of Distillation<br/>21.4 Evolving the Design of Simple Distillation Columns to Improve Heat Integration<br/>21.5 Heat Pumping in Distillation<br/>21.6 Capital Cost Considerations for the Integration of Distillation<br/>21.7 Heat Integration Characteristics of Distillation Sequences<br/>21.8 Heat Integrated Distillation Sequences Based on Optimization of a Superstructure<br/>21.9 Heat Integration of Distillation Columns - Summary<br/>21.10 Exercises<br/>21.11 References<br/>Chapter 22 Heat Integration of Evaporators and Dryers<br/>22.1 The Heat Integration Characteristics of Evaporators<br/>22.2 Appropriate Placement of Evaporators<br/>22.3 Evolving Evaporator Design to Improve Heat Integration<br/>22.4 The Heat Integration Characteristics of Dryers<br/>22.5 Evolving Dryer Design to Improve Heat Integration<br/>22.6 A Case Study<br/>22.7 Heat Integration of Evaporators and Dryers - Summary<br/>22.8 Exercises<br/>22.9 References<br/>Chapter 23 Steam Systems and Cogeneration<br/>23.1 Boiler Feedwater Treatment<br/>23.2 Steam Boilers<br/>23.3 Steam Turbines<br/>23.4 Gas Turbines<br/>23.5 Steam System Configuration<br/>23.6 Steam and Power Balances<br/>23.7 Site Composite Curves<br/>23.8 Cogeneration Targets<br/>23.9 Optimizing Steam Levels<br/>23.10 Site Power-to-Heat Ratio<br/>23.11 Optimizing Steam Systems<br/>23.12 Steam Costs <br/>23.13 Choice of Driver<br/>23.14 Steam Systems and Cogeneration - Summary<br/>23.15 Exercises<br/>23.16 References<br/>Chapter 24 Cooling and Refrigeration Systems<br/>24.1 Cooling Systems<br/>24.2 Recirculating Cooling Water Systems<br/>24.3 Targeting Minimum Cooling Water Flowrate<br/>24.4 Design of Cooling Water Networks<br/>24.5 Retrofit of Cooling Water Systems<br/>24.6 Refrigeration Cycles<br/>24.7 Process Expanders<br/>24.8 Choice of Refrigerant for Compression Refrigeration<br/>24.9 Targeting Refrigeration Power for Compression Refrigeration<br/>24.10 Heat Integration of Compression Refrigeration Processes<br/>24.11 Mixed Refrigerants for Compression Refrigeration<br/>24.12 Absorption Refrigeration<br/>24.13 Indirect Refrigeration<br/>24.14 Cooling and Refrigeration Systems - Summary<br/>24.15 Exercises<br/>24.16 References<br/>Chapter 25 Environmental Design for Atmospheric Emissions<br/> <br/>25.1 Atmospheric Pollution<br/>25.2 Sources of Atmospheric Pollution<br/>25.3 Control of Solid Particulate Emissions to Atmosphere<br/>25.4 Control of VOC Emissions<br/>25.5 Control of Sulfur Emissions<br/>25.6 Control of Oxides of Nitrogen<br/>25.7 Control of Combustion Emissions<br/>25.8 Atmospheric Dispersion<br/>25.9 Environmental Design for Atmospheric Emissions - Summary<br/>25.10 Exercises<br/>25.11 References<br/>Chapter 26 Water System Design<br/>26.1 Aqueous Contamination<br/>26.2 Primary Treatment Processes<br/>26.3 Biological Treatment Processes<br/>26.4 Tertiary Treatment Processes<br/>26.5 Water Use<br/>26.6 Targeting Maximum Water Re-use for Single Contaminants<br/>26.7 Design for Maximum Water Re-use for Single Contaminants<br/>26.8 Targeting and Design for Maximum Water Re-use Based on Optimization of Superstructure<br/>26.9 Process Changes for Reduced Water Consumption<br/>26.10 Targeting Minimum Wastewater Treatment Flowrate for Single Contaminants<br/>26.11 Design for Minimum Wastewater Treatment Flowrate for Single Contaminants<br/>26.12 Regeneration of Wastewater<br/>26.13 Targeting and Design for Effluent Treatment and Regeneration Based Optimization of a Superstructure<br/>26.14 Data Extraction<br/>26.15 Water System Design - Summary<br/>26.16 Exercises<br/>26.17 References<br/>Chapter 27 Inherent Safety<br/>27.1 Fire<br/>27.2 Explosion<br/>27.3 Toxic Release<br/>27.4 Intensification of Hazardous Materials<br/>27.5 Attenuation of Hazardous Materials<br/>27.6 Quantitative Measures of Inherent Safety<br/>27.7 Inherent Safety - Summary<br/>27.8 Exercises<br/>27.9 References<br/>Chapter 28 Waste Minimization<br/>28.1 Minimization of Waste from Reactors<br/>28.2 Minimization of Waste from the Separation and Recycle System<br/>28.3 Minimization of Waste from Process Operations<br/>28.4 Minimization of Utility Waste<br/>28.5 Trading Off Waste Minimization Options<br/>28.6 Life-Cycle Analysis<br/>28.7 Waste Minimization in Practice<br/>28.8 Waste Minimization - Summary<br/>28.9 Exercises<br/>28.10 References<br/>Chapter 29 Overall Strategy for Chemical Process Design and Integration<br/>29.1 The Objectives<br/>29.2 The Hierarchy<br/>29.3 The Final Design<br/>Appendix A Annualization of Capital Cost<br/>Appendix B Gas Compression<br/> B.1 Reciprocating Compressors<br/> B.2 Centrifugal Compressors<br/>Appendix C Heat Transfer Coefficients and Pressure Drop in Shell-and-Tube Heat Exchangers<br/> C.1 Pressure Drop and Heat Transfer Correlations for the Tube-side<br/> C.2 Pressure Drop and Heat Transfer Correlations for the Shell-side<br/> C.3 References<br/>Appendix D Maximum Thermal Effectiveness for 1-2 Shell-and-Tube Heat<br/> Exchangers<br/>Appendix E Expression for the Minimum Number of 1-2 Shell-and-Tube <br/> Heat Exchangers for a Given Unit<br/>Appendix F Algorithm for the Heat Exchange Area Target<br/>Appendix G Algorithm for the Number-of-Shells Target<br/> G.1 Minimum Area Target for Networks of 1-2 Shells<br/> G.2 References<br/>Appendix H Algorithm for Heat Exchanger Capital Cost Target
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name as entry element Chemical processes.
856 41 - ELECTRONIC LOCATION AND ACCESS
Materials specified Table of contents
Uniform Resource Identifier http://www.loc.gov/catdir/toc/ecip0419/2004014695.html
856 42 - ELECTRONIC LOCATION AND ACCESS
Materials specified Publisher description
Uniform Resource Identifier http://www.loc.gov/catdir/description/wiley042/2004014695.html
856 42 - ELECTRONIC LOCATION AND ACCESS
Materials specified Contributor biographical information
Uniform Resource Identifier http://www.loc.gov/catdir/bios/wiley047/2004014695.html
906 ## - LOCAL DATA ELEMENT F, LDF (RLIN)
a 7
b cbc
c orignew
d 1
e ecip
f 20
g y-gencatlg
942 ## - ADDED ENTRY ELEMENTS
Source of classification or shelving scheme
Item type BOOK
Holdings
Withdrawn status Lost status Source of classification or shelving scheme Damaged status Not for loan Permanent Location Current Location Shelving location Date acquired Source of acquisition Cost, normal purchase price Inventory number Full call number Barcode Date last seen Price effective from Item type
          COLLEGE LIBRARY COLLEGE LIBRARY SUBJECT REFERENCE 2007-08-18 ALBASA 6277.50 35545 660.2812 Sm64 2005 CITU-CL-35545 2021-01-22 2021-01-22 BOOK