000 -LEADER |
fixed length control field |
15393cam a22003854a 4500 |
001 - CONTROL NUMBER |
control field |
13632513 |
003 - CONTROL NUMBER IDENTIFIER |
control field |
CITU |
005 - DATE AND TIME OF LATEST TRANSACTION |
control field |
20241030110017.0 |
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION |
fixed length control field |
040622s2005 enka b 001 0 eng |
010 ## - LIBRARY OF CONGRESS CONTROL NUMBER |
LC control number |
2004014695 |
020 ## - INTERNATIONAL STANDARD BOOK NUMBER |
International Standard Book Number |
0471486809 (acidfree paper) |
020 ## - INTERNATIONAL STANDARD BOOK NUMBER |
International Standard Book Number |
0471486817 (pbk. : acidfree paper) |
020 ## - INTERNATIONAL STANDARD BOOK NUMBER |
International Standard Book Number |
9780471486817 |
040 ## - CATALOGING SOURCE |
Original cataloging agency |
CITU LRAC |
Language of cataloging |
eng |
Transcribing agency |
DLC |
Modifying agency |
DLC |
041 ## - LANGUAGE CODE |
Language code of text/sound track or separate title |
eng |
042 ## - AUTHENTICATION CODE |
Authentication code |
pcc |
050 00 - LIBRARY OF CONGRESS CALL NUMBER |
Classification number |
TP155.7 |
Item number |
.S573 2005 |
082 00 - DEWEY DECIMAL CLASSIFICATION NUMBER |
Classification number |
660/.2812 |
Edition number |
22 |
100 1# - MAIN ENTRY--PERSONAL NAME |
Preferred name for the person |
Smith, Robin |
Titles and other words associated with a name |
(Chemical engineer) |
Relator term |
author |
245 10 - TITLE STATEMENT |
Title |
Chemical process design and integration / |
Statement of responsibility, etc |
Robin Smith. |
264 #1 - PUBLICATION, DISTRIBUTION, ETC. (IMPRINT) |
Place of publication, distribution, etc |
Chichester, West Sussex, England ; |
-- |
Hoboken, NJ : |
Name of publisher, distributor, etc |
Wiley, |
Date of publication, distribution, etc |
c2005. |
300 ## - PHYSICAL DESCRIPTION |
Extent |
xxiii, 687 pages : |
Other physical details |
illustrations ; |
Dimensions |
29 cm. |
336 ## - CONTENT TYPE |
Source |
rdacontent |
Content type term |
text |
Content type code |
txt |
337 ## - MEDIA TYPE |
Source |
rdamedia |
Media type term |
unmediated |
Media type code |
n |
338 ## - CARRIER TYPE |
Source |
rdacarrier |
Carrier type term |
volume |
Carrier type code |
nc |
504 ## - BIBLIOGRAPHY, ETC. NOTE |
Bibliography, etc |
Includes bibliographical references and index. |
505 ## - CONTENTS |
Formatted contents note |
CONTENTS<br/> Preface<br/> Acknowledgements<br/> Nomenclature<br/>Chapter 1 The Nature of Chemical Process Design and Integration<br/>1.1 Chemical Products<br/>1.2 Formulation of Design Problems<br/>1.3 Chemical Process Design and Integration<br/>1.4 The Hierarchy of Chemical Process Design and Integration<br/>1.5 Continuous and Batch Processes<br/>1.6 New Design and Retrofit<br/>1.7 Approaches to Chemical Process Design and Integration<br/>1.8 Process Control<br/>1.9 The Nature of Chemical Process Design and Integration - Summary<br/>1.10 References<br/>Chapter 2 Process Economics<br/> 2.1 The Role of Process Economics<br/>2.2 Simple Economic Criteria<br/>2.3 Capital Cost for New Design<br/>2.4 Capital Cost for Retrofit<br/>2.5 Annualized Capital Cost<br/>2.6 Operating Cost<br/>2.7 Project Cash Flow and Economic Evaluation<br/>2.8 Investment Criteria<br/>2.9 Economic Evaluation - Summary<br/>2.10 Exercises<br/>2.11 References<br/>Chapter 3 Optimization<br/>3.1 Objective Functions<br/>3.2 Single Variable Optimization<br/>3.3 Multivariable Optimization<br/>3.4 Constrained Optimization<br/>3.5 Linear Programming<br/>3.6 Non-linear Programming<br/>3.7 Profile Optimization<br/>3.8 Structural Optimization<br/>3.9 Solution of Equations Using Optimization<br/>3.10 The Search for Global Optimality<br/>3.11 Optimization - Summary<br/>3.12 Exercises<br/>3.13 References<br/>Chapter 4 Phase Equilibrium and Thermodynamic Properties<br/>4.1 Equations of State<br/>4.2 Phase Equilibrium for Single Components<br/>4.3 Fugacity and Phase Equilibrium<br/>4.4 Vapor-liquid Equilibrium<br/>4.5 Vapor-liquid Equilibrium Based on Activity Coefficient Models<br/>4.6 Vapor-liquid Equilibrium Based on Equations of State<br/>4.7 Calculation of Vapor-liquid Equilibrium<br/>4.8 Liquid-liquid Equilibrium<br/>4.9 Liquid-liquid Equilibrium Activity Coefficient Models<br/>4.10 Calculation of Liquid-liquid Equilibrium<br/>4.11 Calculation of Enthalpy<br/>4.12 Calculation of Entropy<br/>4.13 Phase Equilibrium and Thermodynamic Properties - Summary<br/>4.14 Exercises<br/>4.15 References<br/>Chapter 5 Choice of Reactor I - Reactor Performance<br/>5.1 Reaction Paths<br/>5.2 Types of Reaction Systems<br/>5.3 Measures of Reactor Performance<br/>5.4 Rate of Reaction<br/>5.5 Idealized Reactor Models <br/>5.6 Choice of Idealized Reactor Model<br/>5.7 Choice of Reactor Performance<br/>5.8 Choice of Reactor Performance - Summary<br/>5.9 Exercises<br/>5.10 References<br/>Chapter 6 Choice of Reactor II - Reactor Conditions<br/>6.1 Reaction Equilibrium<br/>6.2 Reactor Temperature<br/>6.3 Reactor Pressure<br/>6.4 Reactor Phase<br/>6.5 Reactor Concentration<br/>6.6 Biochemical Reactions<br/>6.7 Catalysts<br/>6.8 Choice of Reactor Conditions - Summary<br/>6.9 Exercises<br/>6.10 References<br/>Chapter 7 Choice of Reactor III - Reactor Configuration<br/>7.1 Temperature Control<br/>7.2 Catalyst Deactivation<br/>7.3 Gas-liquid and Liquid-liquid Reactors<br/>7.4 Reactor Configuration<br/>7.5 Reactor Configuration for Heterogeneous Solid-catalyzed Reactions<br/>7.6 Reactor Configuration from Optimization of a Superstructure<br/>7.7 Choice of Reactor Configuration - Summary<br/>7.8 Exercises<br/>7.9 References<br/>Chapter 8 Choice of Separator for Heterogeneous Mixtures<br/>8.1 Homogeneous and Heterogeneous Separation<br/>8.2 Settling and Sedimentation<br/>8.3 Inertial and Centrifugal Separation<br/>8.4 Electrostatic Precipitation<br/>8.5 Filtration<br/>8.6 Scrubbing<br/>8.7 Flotation<br/>8.8 Drying<br/>8.9 Separation of Heterogeneous Mixtures - Summary<br/>8.10 Exercises<br/>8.11 References<br/>Chapter 9 Choice of Separator for Homogeneous Fluid Mixtures I - Distillation<br/>9.1 Single Stage Separation<br/>9.2 Distillation<br/>9.3 Binary Distillation<br/>9.4 Total and Minimum Reflux Conditions for Multicomponent Mixtures<br/>9.5 Finite Reflux Conditions for Multicomponent Mixtures<br/>9.6 Choice of Operating Conditions<br/>9.7 Limitations of Distillation<br/>9.8 Separation of Homogeneous Fluid Mixtures by Distillation - Summary<br/>9.9 Exercises<br/>9.10 References<br/>Chapter 10 Choice of Separator for Homogeneous Fluid Mixtures II - Other Methods<br/>10.1 Absorption<br/>10.2 Liquid-liquid Extraction<br/>10.3 Adsorption<br/>10.4 Membranes<br/>10.5 Crystallization<br/>10.6 Evaporation<br/>10.7 Separation of Homogeneous Fluid Mixtures by Other Methods - Summary<br/>10.8 Exercises<br/>10.9 References<br/>Chapter 11 Distillation Sequencing<br/>11.1 Distillation Sequencing Using Simple Columns<br/>11.2 Practical Constraints Restricting Options<br/>11.3 Choice of Sequence for Simple Non-integrated Distillation Columns<br/>11.4 Distillation Sequencing Using Columns with More than Two Products<br/>11.5 Distillation Sequencing Using Thermal Coupling<br/>11.6 Retrofit of Distillation Sequences<br/>11.7 Crude Oil Distillation <br/>11.8 Distillation Sequencing Based on Optimization of a Superstructure<br/>11.9 Distillation Sequencing - Summary<br/>11.10 Exercises<br/>11.11 References<br/>Chapter 12 Distillation Sequencing for Azeotropic Distillation<br/>12.1 Azeotropic Systems<br/>12.2 Change in Pressure<br/>12.3 Representation of Azeotropic Distillation<br/>12.4 Distillation at Total Reflux Conditions<br/>12.5 Distillation at Minimum Reflux Conditions<br/>12.6 Distillation at Finite Reflux Conditions<br/>12.7 Distillation Sequencing Using an Entrainer<br/>12.8 Heterogeneous Azeotropic Distillation <br/>12.9 Entrainer Selection<br/>12.10 Multicomponent Systems<br/>12.11 Trade-offs in Azeotropic Distillation <br/>12.12 Membrane Separation <br/>12.13 Distillation Sequencing for Azeotropic Distillation - Summary<br/>12.14 Exercises<br/>12.15 References<br/>Chapter 13 Reaction, Separation and Recycle Systems for Continuous Processes<br/>13.1 The Function of Process Recycles<br/>13.2 Recycles With Purges<br/>13.3 Pumping and Compression<br/>13.4 Simulation of Recycles<br/>13.5 The Process Yield<br/>13.6 Optimization of Reactor Conversion<br/>13.7 Optimization of Processes Involving a Purge<br/>13.8 Hybrid Reaction and Separation<br/>13.9 Feed, Product and Intermediate Storage<br/>13.10 Reaction and Separation Systems for Continuous Processes - Summary<br/>13.11 Exercises<br/>13.12 References<br/>Chapter 14 Reaction, Separation and Recycle Systems for Batch Processes<br/>14.1 Batch Processes<br/>14.2 Batch Reactors<br/>14.3 Batch Separation Processes<br/>14.4 Gantt Charts<br/>14.5 Production Schedules for Single Products<br/>14.6 Production Schedules for Multiple Products<br/>14.7 Equipment Cleaning and Material Transfer<br/>14.8 Synthesis of Reaction and Separation Systems for Batch Processes<br/>14.9 Optimization of Batch Processes<br/>14.10 Storage in Batch Processes<br/>14.11 Reaction-Separation Systems for Batch Processes - Summary<br/>14.12 Exercises<br/>14.13 References<br/>Chapter 15 Heat Exchanger Networks I - Heat Transfer Equipment<br/>15.1 Overall Heat Transfer Coefficients<br/>15.2 Heat Transfer Coefficients and Pressure Drops in Shell-and-tube Heat Exchangers<br/>15.3 Temperature Difference in Shell-and-tube Heat Exchangers<br/>15.4 Allocation of Fluids in Shell-and-tube Heat Exchangers<br/>15.5 Extended Surface Tubes<br/>15.6 Condensers<br/>15.7 Reboilers<br/>15.8 Other Types of Heat Exchanger Equipment<br/>15.9 Heat Exchanger Equipment - Summary<br/>15.10 Exercises<br/>15.11 References<br/>Chapter 16 Heat Exchanger Networks II - Energy Targets<br/>16.1 Composite Curves<br/>16.2 The Heat Recovery Pinch<br/>16.3 Threshold Problems<br/>16.4 The Problem Table Algorithm<br/>16.5 Non-global Minimum Temperature Differences<br/>16.6 Process Constraints<br/>16.7 Utility Selection<br/>16.8 Furnaces<br/>16.9 Cogeneration (Combined Heat and Power Generation)<br/>16.10 Integration of Heat Pumps<br/>16.11 Heat Exchanger Network and Utilities Energy Targets - Summary<br/>16.12 Exercises<br/>16.13 References<br/>Chapter 17 Heat Exchanger Networks II - Capital and Total Cost Targets<br/>17.1 Number of Heat Exchange Units<br/>17.2 Heat Exchange Area Targets<br/>17.3 Number of Shells Target<br/>17.4 Capital Cost Targets<br/>17.5 Total Cost Targets<br/>17.6 Heat Exchanger Network and Utilities Capital and Total Costs - Summary<br/>17.7 Exercises<br/>17.8 References<br/>Chapter 18 Heat Exchanger Networks III - Network Design<br/>18.1 The Pinch Design Method<br/>18.2 Design for Threshold Problems<br/>18.3 Stream Splitting<br/>18.4 Design for Multiple Pinches<br/>18.5 Remaining Problem Analysis<br/>18.6 Network Optimization<br/>18.7 Heat Exchanger Network Design Based on the Optimization of a Superstructure<br/>18.8 Heat Exchanger Network Retrofit<br/>18.9 Addition of New Heat Transfer Area in Retrofit <br/>18.10 Heat Exchanger Network Design - Summary<br/>18.11 Exercises<br/>18.12 References<br/>Chapter 19 Heat Exchanger Networks IV - Stream Data<br/>19.1 Process Changes for Heat Integration<br/>19.2 The Trade-offs Between Process Changes, Utility Selection,<br/>19.3 Data Extraction<br/>19.4 Heat Exchanger Network Stream Data - Summary<br/>19.5 Exercises<br/>19.6 Reference<br/>Chapter 20 Heat Integration of Reactors<br/>20.1 The Heat Integration Characteristics of Reactors<br/>20.2 Appropriate Placement of Reactors<br/>20.3 Use of the Grand Composite Curve for Heat Integration of Reactors<br/>20.4 Evolving Reactor Design to Improve Heat Integration<br/>20.5 Heat Integration of Reactors - Summary<br/>20.6 References<br/>Chapter 21 Heat Integration of Distillation<br/>21.1 The Heat Integration Characteristics of Distillation<br/>21.2 Appropriate Placement of Distillation<br/>21.3 Use of the Grand Composite Curve for Heat Integration of Distillation<br/>21.4 Evolving the Design of Simple Distillation Columns to Improve Heat Integration<br/>21.5 Heat Pumping in Distillation<br/>21.6 Capital Cost Considerations for the Integration of Distillation<br/>21.7 Heat Integration Characteristics of Distillation Sequences<br/>21.8 Heat Integrated Distillation Sequences Based on Optimization of a Superstructure<br/>21.9 Heat Integration of Distillation Columns - Summary<br/>21.10 Exercises<br/>21.11 References<br/>Chapter 22 Heat Integration of Evaporators and Dryers<br/>22.1 The Heat Integration Characteristics of Evaporators<br/>22.2 Appropriate Placement of Evaporators<br/>22.3 Evolving Evaporator Design to Improve Heat Integration<br/>22.4 The Heat Integration Characteristics of Dryers<br/>22.5 Evolving Dryer Design to Improve Heat Integration<br/>22.6 A Case Study<br/>22.7 Heat Integration of Evaporators and Dryers - Summary<br/>22.8 Exercises<br/>22.9 References<br/>Chapter 23 Steam Systems and Cogeneration<br/>23.1 Boiler Feedwater Treatment<br/>23.2 Steam Boilers<br/>23.3 Steam Turbines<br/>23.4 Gas Turbines<br/>23.5 Steam System Configuration<br/>23.6 Steam and Power Balances<br/>23.7 Site Composite Curves<br/>23.8 Cogeneration Targets<br/>23.9 Optimizing Steam Levels<br/>23.10 Site Power-to-Heat Ratio<br/>23.11 Optimizing Steam Systems<br/>23.12 Steam Costs <br/>23.13 Choice of Driver<br/>23.14 Steam Systems and Cogeneration - Summary<br/>23.15 Exercises<br/>23.16 References<br/>Chapter 24 Cooling and Refrigeration Systems<br/>24.1 Cooling Systems<br/>24.2 Recirculating Cooling Water Systems<br/>24.3 Targeting Minimum Cooling Water Flowrate<br/>24.4 Design of Cooling Water Networks<br/>24.5 Retrofit of Cooling Water Systems<br/>24.6 Refrigeration Cycles<br/>24.7 Process Expanders<br/>24.8 Choice of Refrigerant for Compression Refrigeration<br/>24.9 Targeting Refrigeration Power for Compression Refrigeration<br/>24.10 Heat Integration of Compression Refrigeration Processes<br/>24.11 Mixed Refrigerants for Compression Refrigeration<br/>24.12 Absorption Refrigeration<br/>24.13 Indirect Refrigeration<br/>24.14 Cooling and Refrigeration Systems - Summary<br/>24.15 Exercises<br/>24.16 References<br/>Chapter 25 Environmental Design for Atmospheric Emissions<br/> <br/>25.1 Atmospheric Pollution<br/>25.2 Sources of Atmospheric Pollution<br/>25.3 Control of Solid Particulate Emissions to Atmosphere<br/>25.4 Control of VOC Emissions<br/>25.5 Control of Sulfur Emissions<br/>25.6 Control of Oxides of Nitrogen<br/>25.7 Control of Combustion Emissions<br/>25.8 Atmospheric Dispersion<br/>25.9 Environmental Design for Atmospheric Emissions - Summary<br/>25.10 Exercises<br/>25.11 References<br/>Chapter 26 Water System Design<br/>26.1 Aqueous Contamination<br/>26.2 Primary Treatment Processes<br/>26.3 Biological Treatment Processes<br/>26.4 Tertiary Treatment Processes<br/>26.5 Water Use<br/>26.6 Targeting Maximum Water Re-use for Single Contaminants<br/>26.7 Design for Maximum Water Re-use for Single Contaminants<br/>26.8 Targeting and Design for Maximum Water Re-use Based on Optimization of Superstructure<br/>26.9 Process Changes for Reduced Water Consumption<br/>26.10 Targeting Minimum Wastewater Treatment Flowrate for Single Contaminants<br/>26.11 Design for Minimum Wastewater Treatment Flowrate for Single Contaminants<br/>26.12 Regeneration of Wastewater<br/>26.13 Targeting and Design for Effluent Treatment and Regeneration Based Optimization of a Superstructure<br/>26.14 Data Extraction<br/>26.15 Water System Design - Summary<br/>26.16 Exercises<br/>26.17 References<br/>Chapter 27 Inherent Safety<br/>27.1 Fire<br/>27.2 Explosion<br/>27.3 Toxic Release<br/>27.4 Intensification of Hazardous Materials<br/>27.5 Attenuation of Hazardous Materials<br/>27.6 Quantitative Measures of Inherent Safety<br/>27.7 Inherent Safety - Summary<br/>27.8 Exercises<br/>27.9 References<br/>Chapter 28 Waste Minimization<br/>28.1 Minimization of Waste from Reactors<br/>28.2 Minimization of Waste from the Separation and Recycle System<br/>28.3 Minimization of Waste from Process Operations<br/>28.4 Minimization of Utility Waste<br/>28.5 Trading Off Waste Minimization Options<br/>28.6 Life-Cycle Analysis<br/>28.7 Waste Minimization in Practice<br/>28.8 Waste Minimization - Summary<br/>28.9 Exercises<br/>28.10 References<br/>Chapter 29 Overall Strategy for Chemical Process Design and Integration<br/>29.1 The Objectives<br/>29.2 The Hierarchy<br/>29.3 The Final Design<br/>Appendix A Annualization of Capital Cost<br/>Appendix B Gas Compression<br/> B.1 Reciprocating Compressors<br/> B.2 Centrifugal Compressors<br/>Appendix C Heat Transfer Coefficients and Pressure Drop in Shell-and-Tube Heat Exchangers<br/> C.1 Pressure Drop and Heat Transfer Correlations for the Tube-side<br/> C.2 Pressure Drop and Heat Transfer Correlations for the Shell-side<br/> C.3 References<br/>Appendix D Maximum Thermal Effectiveness for 1-2 Shell-and-Tube Heat<br/> Exchangers<br/>Appendix E Expression for the Minimum Number of 1-2 Shell-and-Tube <br/> Heat Exchangers for a Given Unit<br/>Appendix F Algorithm for the Heat Exchange Area Target<br/>Appendix G Algorithm for the Number-of-Shells Target<br/> G.1 Minimum Area Target for Networks of 1-2 Shells<br/> G.2 References<br/>Appendix H Algorithm for Heat Exchanger Capital Cost Target |
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM |
Topical term or geographic name as entry element |
Chemical processes. |
856 41 - ELECTRONIC LOCATION AND ACCESS |
Materials specified |
Table of contents |
Uniform Resource Identifier |
http://www.loc.gov/catdir/toc/ecip0419/2004014695.html |
856 42 - ELECTRONIC LOCATION AND ACCESS |
Materials specified |
Publisher description |
Uniform Resource Identifier |
http://www.loc.gov/catdir/description/wiley042/2004014695.html |
856 42 - ELECTRONIC LOCATION AND ACCESS |
Materials specified |
Contributor biographical information |
Uniform Resource Identifier |
http://www.loc.gov/catdir/bios/wiley047/2004014695.html |
906 ## - LOCAL DATA ELEMENT F, LDF (RLIN) |
a |
7 |
b |
cbc |
c |
orignew |
d |
1 |
e |
ecip |
f |
20 |
g |
y-gencatlg |
942 ## - ADDED ENTRY ELEMENTS |
Source of classification or shelving scheme |
|
Item type |
BOOK |